Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Npj Imaging ; 1(1): 3, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38665236

RESUMO

Conventional histology, as well as immunohistochemistry or immunofluorescence, enables the study of morphological and phenotypical changes during tissue inflammation with single-cell accuracy. However, although highly specific, such techniques require multiple time-consuming steps to apply exogenous labels, which might result in morphological deviations from native tissue structures. Unlike these techniques, mid-infrared (mid-IR) microspectroscopy is a label-free optical imaging method that retrieves endogenous biomolecular contrast without altering the native composition of the samples. Nevertheless, due to the strong optical absorption of water in biological tissues, conventional mid-IR microspectroscopy has been limited to dried thin (5-10 µm) tissue preparations and, thus, it also requires time-consuming steps-comparable to conventional imaging techniques. Here, as a step towards label-free analytical histology of unprocessed tissues, we applied mid-IR optoacoustic microscopy (MiROM) to retrieve intrinsic molecular contrast by vibrational excitation and, simultaneously, to overcome water-tissue opacity of conventional mid-IR imaging in thick (mm range) tissues. In this proof-of-concept study, we demonstrated application of MiROM for the fast, label-free, non-destructive assessment of the hallmarks of inflammation in excised white adipose tissue; i.e., formation of crown-like structures and changes in adipocyte morphology.

2.
Photoacoustics ; 20: 100200, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32714832

RESUMO

The Hessian-based Frangi vesselness filter is commonly used to enhance vasculature in optoacoustic (photoacoustic) images, but its accuracy and limitations have never been rigorously assessed. Here we validate the ability of the filter to enhance vessel-like structures in phantoms, and we introduce an experimental approach that uses measurements before and after the administration of gold nanorods (AuNRs) to examine filter performance in vivo. We evaluate the influence of contrast, filter scales, angular tomographic coverage, out-of-plane signals and light fluence on image quality, and gain insight into the performance of the filter. We observe the generation of artifactual structures that can be misinterpreted as vessels and provide recommendations to ensure appropriate use of Frangi and other vesselness filters and avoid misinterpretation of post-processed optoacoustic images.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA