Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Regul Toxicol Pharmacol ; 122: 104892, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33592196

RESUMO

In 2019, the California Office of Environmental Health Hazard Assessment initiated a review of the carcinogenic hazard potential of acetaminophen, including an assessment of its genotoxicity. The objective of this analysis was to inform this review process with a weight-of-evidence assessment of more than 65 acetaminophen genetic toxicology studies that are of widely varying quality and conformance to accepted standards and relevance to humans. In these studies, acetaminophen showed no evidence of induction of point or gene mutations in bacterial and mammalian cell systems or in in vivo studies. In reliable, well-controlled test systems, clastogenic effects were only observed in unstable, p53-deficient cell systems or at toxic and/or excessively high concentrations that adversely affect cellular processes (e.g., mitochondrial respiration) and cause cytotoxicity. Across the studies, there was no clear evidence that acetaminophen causes DNA damage in the absence of toxicity. In well-controlled clinical studies, there was no meaningful evidence of chromosomal damage. Based on this weight-of-evidence assessment, acetaminophen overwhelmingly produces negative results (i.e., is not a genotoxic hazard) in reliable, robust high-weight studies. Its mode of action produces cytotoxic effects before it can induce the stable, genetic damage that would be indicative of a genotoxic or carcinogenic hazard.


Assuntos
Acetaminofen/análise , Animais , Carcinogênese , Ciclo Celular/efeitos dos fármacos , Aberrações Cromossômicas/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Humanos , Testes de Mutagenicidade , Mutagênicos
2.
Regul Toxicol Pharmacol ; 120: 104859, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33388367

RESUMO

In 2019 California's Office of Environmental Health Hazard Assessment (OEHHA) initiated a review of the carcinogenic hazard potential of acetaminophen. In parallel with this review, herein we evaluated the mechanistic data related to the steps and timing of cellular events following therapeutic recommended (≤4 g/day) and higher doses of acetaminophen that may cause hepatotoxicity to evaluate whether these changes indicate that acetaminophen is a carcinogenic hazard. At therapeutic recommended doses, acetaminophen forms limited amounts of N-acetyl-p-benzoquinone-imine (NAPQI) without adverse cellular effects. Following overdoses of acetaminophen, there is potential for more extensive formation of NAPQI and depletion of glutathione, which may result in mitochondrial dysfunction and DNA damage, but only at doses that result in cell death - thus making it implausible for acetaminophen to induce the kind of stable, genetic damage in the nucleus indicative of a genotoxic or carcinogenic hazard in humans. The collective data demonstrate a lack of a plausible mechanism related to carcinogenicity and are consistent with rodent cancer bioassays, epidemiological results reviewed in companion manuscripts in this issue, as well as conclusions of multiple international health authorities.


Assuntos
Acetaminofen/toxicidade , Fenômenos Bioquímicos/efeitos dos fármacos , Carcinógenos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas , Fígado/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Fenômenos Bioquímicos/fisiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/fisiologia , Humanos , Fígado/metabolismo , Fígado/patologia , Transdução de Sinais/fisiologia
3.
PLoS Comput Biol ; 16(6): e1007622, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32484845

RESUMO

Interpretations of elevated blood levels of alanine aminotransferase (ALT) for drug-induced liver injury often assume that the biomarker is released passively from dying cells. However, the mechanisms driving that release have not been explored experimentally. The usefulness of ALT and related biomarkers will improve by developing mechanism-based explanations of elevated levels that can be expanded and elaborated incrementally. We provide the means to challenge the ability of closely related model mechanisms to generate patterns of simulated hepatic injury and ALT release that scale (or not) to be quantitatively similar to the wet-lab validation targets, which are elevated plasma ALT values following acetaminophen (APAP) exposure in mice. We build on a published model mechanism that helps explain the generation of characteristic spatiotemporal features of APAP hepatotoxicity within hepatic lobules. Discrete event and agent-oriented software methods are most prominent. We instantiate and leverage a small constellation of concrete model mechanisms. Their details during execution help bring into focus ways in which particular sources of uncertainty become entangled with cause-effect details within and across several levels. We scale ALT amounts in virtual mice directly to target plasma ALT values in individual mice. A virtual experiment comprises a set of Monte Carlo simulations. We challenge the sufficiency of four potentially explanatory theories for ALT release. The first of the tested model theories failed to achieve the initial validation target, but each of the three others succeeded. Results for one of the three model mechanisms matched all target ALT values quantitatively. It explains how ALT externalization is the combined consequence of lobular-location-dependent drug-induced cellular damage and hepatocyte death. Falsification of one (or more) of the model mechanisms provides new knowledge and incrementally shrinks the constellation of model mechanisms. The modularity and biomimicry of our explanatory models enable seamless transition from mice to humans.


Assuntos
Alanina Transaminase/sangue , Biomarcadores/sangue , Hepatócitos/efeitos dos fármacos , Necrose , Acetaminofen/toxicidade , Animais , Doença Hepática Induzida por Substâncias e Drogas , Biologia Computacional , Simulação por Computador , Hepatócitos/enzimologia , Fígado/efeitos dos fármacos , Fígado/enzimologia , Camundongos , Método de Monte Carlo , Software
4.
Methods Mol Biol ; 1250: 363-76, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26272158

RESUMO

Cholestasis is a common pathological component of numerous liver diseases. The initiating event during cholestatic liver injury is widely believed to be the accumulation of bile acids in hepatocytes and the hepatic parenchyma. As bile acids are considered the primary toxic compounds in the injury, numerous in vitro models of bile acid-induced injury and bile acid-induced changes in gene expression have been developed to attempt to better define cholestasis at a cellular level. This chapter focuses on the establishment of a system for determining the effects of cholestatic concentrations of bile acids on hepatocytes using primary hepatocytes or hepatoma cell lines. Moreover, this chapter addresses significant differences in the response of different species to bile acid exposure and novel information on the relevance of treating hepatocytes with concentrations of specific bile acids.


Assuntos
Colestase/metabolismo , Hepatócitos/metabolismo , Técnicas In Vitro , Alanina Transaminase/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Ácidos e Sais Biliares/toxicidade , Caspase 3/metabolismo , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Colestase/genética , Colestase/patologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Humanos , Lactato Desidrogenases/metabolismo
5.
J Clin Med ; 4(5): 1063-1078, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26167291

RESUMO

Drug-induced liver injury (DILI) is major problem for both the drug industry and for clinicians. There are two basic categories of DILI: intrinsic and idiosyncratic. The former is the chief cause of acute liver failure in several developed countries, while the latter is the most common reason for post-marketing drug withdrawal and a major reason for failure to approve new drugs in the U.S. Although considerably more progress has been made in the study of intrinsic DILI, our understanding of both forms of drug hepatotoxicity remains incomplete. Recent work involving microRNAs (miRNAs) has advanced our knowledge of DILI in two ways: (1) possible roles of miRNAs in the pathophysiological mechanisms of DILI have been identified, and (2) circulating miRNA profiles have shown promise for the detection and diagnosis of DILI in clinical settings. The purpose of this review is to summarize major findings in these two areas of research. Taken together, exciting progress has been made in the study of miRNAs in DILI. Possible mechanisms through which miRNA species contribute to the basic mechanisms of DILI are beginning to emerge, and new miRNA-based biomarkers have the potential to greatly improve diagnosis of liver injury and prediction of patient outcomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA