Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Environ Pollut ; 336: 122388, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37598929

RESUMO

Age-related changes and interindividual variability in the degree of exposure to hazardous substances in the environment are pertinent factors to be considered in human risk assessment. Existing risk assessments remain in a one-size-fits-all approach, often without due consideration of inter-individual toxicokinetic variability factors, such as age. The purpose of this study was to advance from the existing risk assessment of hazardous substances based on toxicokinetics to a precise human risk assessment by additionally considering the effects of physiologic and metabolic fluctuations and interindividual variability in age. Qualitative age-associated physiologic and metabolic changes in humans, obtained through a meta-analysis, were quantitatively modeled to produce the final biological age algorithm (BAA). The developed BAAs (for males) were extended and applied to the reported testicular reproductive toxicity-focused di-isobutyl-phthalate (DiBP)-mono-isobutyl-phthalate (MiBP) physiologically based toxicokinetic (PBTK) model in males. The advanced PBTK model combined with the BAA was applied to the human risk assessment based on MiBP biomonitoring data. As a result, the specialized DiBP external exposure values for each age could be estimated. Additionally, by applying the Monte Carlo simulation, the distribution of internal exposure diversity among individuals according to the same external exposure dose could be estimated. The contributions of physiologic and metabolic factors to the age-dependent toxicokinetic changes were approximately 93.41-99.99 and 0.01-6.59%, respectively. In addition, the relative contribution of metabolic factors was major in infants and continued to decrease as age increased (up to about age 30 years). This study provides a step-by-step platform that can be widely applied to overcome the limitations of existing toxicokinetic models that still require interindividual pharmacokinetic variability explanations. This will be important for the rationalization and explanation of inter-individual variability in the pharmacokinetics of many substances.


Assuntos
Substâncias Perigosas , Modelos Biológicos , Masculino , Lactente , Humanos , Adulto , Toxicocinética , Medição de Risco , Envelhecimento
2.
J Pharm Anal ; 13(6): 660-672, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37440913

RESUMO

Fexofenadine is useful in various allergic disease treatment. However, the pharmacokinetic variability information and quantitative factor identification of fexofenadine are very lacking. This study aimed to verify the validity of previously proposed genetic factors through fexofenadine population pharmacokinetic modeling and to explore the quantitative correlations affecting the pharmacokinetic variability. Polymorphisms of the organic-anion-transporting-polypeptide (OATP) 1B1 and 2B1 have been proposed to be closely related to fexofenadine pharmacokinetic diversity. Therefore, modeling was performed using fexofenadine oral exposure data according to the OATP1B1- and 2B1-polymorphisms. OATP1B1 and 2B1 were identified as effective covariates of clearance (CL/F) and distribution volume (V/F)-CL/F, respectively, in fexofenadine pharmacokinetic variability. CL/F and average steady-state plasma concentration of fexofenadine differed by up to 2.17- and 2.20-folds, respectively, depending on the OATP1B1 polymorphism. Among the individuals with different OATP2B1 polymorphisms, the CL/F and V/F differed by up to 1.73- and 2.00-folds, respectively. Ratio of the areas under the curves following single- and multiple-administrations, and the cumulative ratio were significantly different between OATP1B1- and 2B1-polymorphism groups. Based on quantitative prediction comparison through a model-based approach, OATP1B1 was confirmed to be relatively more important than 2B1 regarding the degree of effect on fexofenadine pharmacokinetic variability. Based on the established pharmacokinetic-pharmacodynamic relationship, the difference in fexofenadine efficacy according to genetic polymorphisms of OATP1B1 and 2B1 was 1.25- and 0.87-times, respectively, and genetic consideration of OATP1B1 was expected to be important in the pharmacodynamics area as well. This population pharmacometrics study will be a very useful starting point for fexofenadine precision medicine.

3.
Environ Pollut ; 312: 120041, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36030954

RESUMO

Environmental exposure to 4-nonylphenol (4-NP) is extensive, and studies related to human risk assessment must continue. Especially, prediction of toxicodynamics (TDs) related to reproductive toxicity in males is very important in risk-level assessment and management of 4-NP. This study aimed to develop a physiologically-based-toxicokinetic-toxicodynamic (PBTK-TD) model that added a TD prostate model to the previously reported 4-n-nonylphenol (4-n-NP) physiologically-based-pharmacokinetic (PBPK) model. Modeling was performed under the assumption of similar TKs between 4-n-NP and 4-NP because TK experiments on 4-NP, a random-mixture, are practically difficult. This study was very important to quantitatively predict the TKs and TDs of 4-NP by age at exposure using an advanced PBTK-TD model that reflected physiological-changes according to age. TD-modeling was performed based on the reported toxic effects of 4-NP on RWPE-1 cells, a human-prostate-epithelial-cell-line. Through a meta-analysis of reported human physiological data, body weight, tissue volume, and blood flow rate patterns according to age were mathematically modeled. These relationships were reflected in the PBTK-TD model for 4-NP so that the 4-NP TK and TD changes according to age and their differences could be confirmed. Differences in TK and TD parameters of 4-NP at various ages were not large, within 3.61-fold. Point-of-departure (POD) and reference-doses for each age estimated using the model varied as 426.37-795.24 and 42.64-79.52 µg/kg/day, but the differences (in POD or reference doses between ages) were not large, at less than 1.87-times. The PBTK-TD model simulation predicted that even a 100-fold 4-NP PODman dose would not have large toxicity to the prostate. With a focus on TDs, the predicted maximum possible exposure of 4-NP was as high as 6.06-23.60 mg/kg/day. Several toxicity-related values estimated by the dose-response curve were higher than those calculated, depending upon the PK or TK, which would be useful as a new exposure limit for prostate toxicity of 4-NP.


Assuntos
Modelos Biológicos , Humanos , Masculino , Fenóis , Medição de Risco , Toxicocinética
4.
Arch Toxicol ; 96(10): 2687-2715, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35723719

RESUMO

As a toxic substance, 4-n-nonylphenol (4-n-NP) or 4-nonylphenol (4-NP) is widely present in the environment. 4-n-NP is a single substance with a linear-alkyl side chain, but 4-NP usually refers to a random mixture containing various branched types. Unfortunately, human risk assessment and/or exposure level analysis for 4-n-NP (or 4-NP) were almost nonexistent, and related research was urgently needed. This study aimed to analyze the various exposures of 4-n-NP (or 4-NP) through development of a physiologically based-pharmacokinetic (PBPK) model considering gender difference in pharmacokinetics of 4-n-NP and its application to human risk assessment studies. A PBPK model was newly developed considering gender differences in 4-n-NP pharmacokinetics and applied to a human risk assessment for each gender. Exposure analysis was performed using a PBPK model that considered gender differences in 4-n-NP (or 4-NP) exposure and high variabilities in several countries. Furthermore, an extended application was attempted as a human risk assessment for random mixture 4-NP, which is difficult to accurately evaluate in reality. External-exposure and margin-of-safety estimated with the same internal exposure amount differed between genders, meaning the need for a differentiated risk assessment considering gender. Exposure analysis based on biomonitoring data confirmed large variability in exposure to 4-n-NP (or 4-NP) by country, group, and period. External-exposures estimated using PBPK model varied widely, ranging from 0.039 to 63.875 mg/kg/day (for 4-n-NP or 4-NP). By country, 4-n-NP (or 4-NP) exposure was higher in females than in males and the margin-of-safety tended to be low. Overall, exposure to 4-n-NP (or 4-NP) in populations was largely not safe, suggesting need for ongoing management and monitoring. Considering low in vivo accumulation confirmed by PBPK model, risk reduction of 4-n-NP is possible by reducing its use.


Assuntos
Modelos Biológicos , Fenóis , Feminino , Humanos , Masculino , Fenóis/farmacocinética , Fenóis/toxicidade , Medição de Risco , Fatores Sexuais
5.
Arch Toxicol ; 95(7): 2385-2402, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33907876

RESUMO

Di-isobutyl phthalate (DiBP) is a substance used in the production of objects frequently used in human life. Mono-isobutyl phthalate (MiBP), a major in vivo metabolite of DiBP, is a biomarker for DiBP exposure assessment. Therefore, risk assessment studies on DiBP and MiBP, which have not yet been reported in detail, are needed. The aim of this study was to develop and evaluate a physiologically based pharmacokinetic (PBPK) model for DiBP and MiBP in rats and extend this to human risk assessment based on human exposure. Pharmacokinetic studies were performed in male rats following the administration of 5-100 mg/kg DiBP, and these results were used for the development and validation of the PBPK model. In addition, the previous pharmacokinetic results in female rats following DiBP administration and the pharmacokinetic results in both males and females according to multiple exposures to DiBP were used to develop and validate the PBPK model. The metabolism of DiBP to MiBP in the body was very significant and rapid, and the biodistribution of MiBP was broad and major. Furthermore, the amount of MiBP in the body showed a correlation with DiBP exposure, and from this, a PBPK model was developed to evaluate the external exposure of DiBP from the internal exposure of MiBP. The predicted rat plasma, urine, fecal, and tissue concentrations using the developed PBPK model fitted well with the observed values. The established PBPK model for rats was extrapolated to a human PBPK model of DiBP and MiBP based on human physiological parameters and allometric scaling. The reference dose of 0.512 mg/kg/day of DiBP and external doses of 6.14-280.90 µg/kg/day DiBP for human risk assessment were estimated using Korean biomonitoring values. Valuable insight and approaches to assessing human health risks associated with DiBP exposure were provided by this study.


Assuntos
Poluentes Ambientais , Ácidos Ftálicos , Animais , Exposição Ambiental , Feminino , Humanos , Masculino , Ácidos Ftálicos/metabolismo , Ácidos Ftálicos/toxicidade , Ratos , Medição de Risco , Distribuição Tecidual
6.
Arch Toxicol ; 94(7): 2377-2400, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32303804

RESUMO

Diethyl phthalate (DEP) belongs to phthalates with short alkyl chains. It is a substance frequently used to make various products. Thus, humans are widely exposed to DEP from the surrounding environment such as food, soil, air, and water. As previously reported in many studies, DEP is an endocrine disruptor with reproductive toxicity. Monoethyl phthalate (MEP), a major metabolite of DEP in vivo, is a biomarker for DEP exposure assessment. It is also an endocrine disruptor with reproductive toxicity, similar to DEP. However, toxicokinetic studies on both MEP and DEP have not been reported in detail yet. Therefore, the objective of this study was to evaluate and develop physiologically based pharmacokinetic (PBPK) model for both DEP and MEP in rats and extend this to human risk assessment based on human exposure. This study was conducted in vivo after intravenous or oral administration of DEP into female (2 mg/kg dose) and male (0.1-10 mg/kg dose) rats. Biological samples consisted of urine, plasma, and 11 different tissues. These samples were analyzed using UPLC-ESI-MS/MS method. For DEP, the tissue to plasma partition coefficient was the highest in the kidney, followed by that in the liver. For MEP, the tissue to plasma partition coefficient was the highest in the liver. It was less than unity in all other tissues. Plasma, urine, and fecal samples were also obtained after IV administration of MEP (10 mg/kg dose) to male rats. All results were reflected in a model developed in this study, including in vivo conversion from DEP to MEP. Predicted concentrations of DEP and MEP in rat urine, plasma, and tissue samples using the developed PBPK model fitted well with observed values. We then extrapolated the PBPK model in rats to a human PBPK model of DEP and MEP based on human physiological parameters. Reference dose of 0.63 mg/kg/day (or 0.18 mg/kg/day) for DEP and external doses of 0.246 µg/kg/day (pregnant), 0.193 µg/kg/day (fetus), 1.005-1.253 µg/kg/day (adults), 0.356-0.376 µg/kg/day (adolescents), and 0.595-0.603 µg/kg/day (children) for DEP for human risk assessment were estimated using Korean biomonitoring values. Our study provides valuable insight into human health risk assessment regarding DEP exposure.


Assuntos
Modelos Biológicos , Ácidos Ftálicos/farmacocinética , Ácidos Ftálicos/toxicidade , Administração Intravenosa , Administração Oral , Animais , Biotransformação , Feminino , Humanos , Masculino , Ácidos Ftálicos/administração & dosagem , Ligação Proteica , Ratos Sprague-Dawley , Medição de Risco , Distribuição Tecidual , Toxicocinética
7.
Heart Vessels ; 35(2): 214-222, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31482215

RESUMO

Hypertrophic cardiomyopathy (HCM) is a genetic cardiac disease that represents a broad spectrum of morphologic features and clinical presentations. However, little is known about the impact of gender differences in heart failure (HF) development in non-obstructive HCM. We assessed clinical and echocardiographic parameters according to gender in patients with non-obstructive HCM and evaluated the impact of gender on HF presentation and cardiovascular (CV) outcomes in this population. We investigated 202 consecutive patients with non-obstructive HCM. Clinical parameters and conventional echocardiographic measurements including tissue Doppler measurements were evaluated and compared according to gender. Additionally, left ventricular (LV) deformation was assessed with global longitudinal strain (GLS) utilizing 2D speckle tracking software. Of the 202 patients (age = 63 ± 14 years, male: female = 141: 61), 51 patients (24.8%) presented with HF and female patients had HF more frequently (52.5% vs. 12.8%, P < 0.001). Females were older, had a higher prevalence of atrial fibrillation, had increased left atrial volume (LAV), and a higher ratio of early diastolic mitral inflow to early annular velocity (E/e') than males (70 ± 12 years vs. 59 ± 14 years, P < 0.001 for age; 51.4 ± 19.3 mL/m2 vs. 40.0 [Formula: see text] 13.4 mL/m2, P < 0.001 for indexed LAV; 17.2 [Formula: see text] 6.0 vs. 13.0 [Formula: see text] 4.3, P < 0.001 for E/e'). While LV maximal thickness and LV ejection fraction were comparable between men and women, GLS was decreased significantly in female patients (- 13.5 [Formula: see text] 3.4% vs. - 15.6 [Formula: see text] 4.0%, P = 0.001 for GLS). Even after adjusting for clinical factors, female was independently associated with HF presentation (Odd ratio 5.19, 95% CI 2.24-12.03, P < 0.001). During a median follow-up duration 34.0 months, 20 patients (9.9%) had HF hospitalization or CV death. In a multivariable analysis, female gender was associated with higher risk of the composite of HF hospitalization or CV death and HF hospitalization alone than male (Adjusted hazard ratio [HR] = 3.31, 95% CI 1.17-9.35, P = 0.024 for primary composite outcome of HF hospitalization or CV death; adjusted HR = 4.78, 95% CI 1.53-14.96, P = 0.007 for HF hospitalization). In patients with non-obstructive HCM, female patients presented with HF more frequently and showed a higher risk of CV events than male patients. LA volume, E/e' and LV mechanics were different between the genders, suggesting that these might contribute to greater susceptibility to HF in women with HCM.


Assuntos
Cardiomiopatia Hipertrófica/fisiopatologia , Disparidades nos Níveis de Saúde , Insuficiência Cardíaca/fisiopatologia , Volume Sistólico , Função Ventricular Esquerda , Idoso , Idoso de 80 Anos ou mais , Fibrilação Atrial/epidemiologia , Fibrilação Atrial/fisiopatologia , Função do Átrio Esquerdo , Cardiomiopatia Hipertrófica/diagnóstico por imagem , Cardiomiopatia Hipertrófica/mortalidade , Cardiomiopatia Hipertrófica/terapia , Progressão da Doença , Ecocardiografia Doppler , Feminino , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/mortalidade , Insuficiência Cardíaca/terapia , Hospitalização , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Prognóstico , Medição de Risco , Fatores de Risco , Fatores Sexuais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA