Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Sci Rep ; 9(1): 13188, 2019 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-31515494

RESUMO

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have been developed for cardiac cell transplantation studies more than a decade ago. In order to establish the hiPSC-CM-based platform as an autologous source for cardiac repair and drug toxicity, it is vital to understand the functionality of cardiomyocytes. Therefore, the goal of this study was to assess functional physiology, ultrastructural morphology, gene expression, and microRNA (miRNA) profiling at Wk-1, Wk-2 & Wk-4 in hiPSC-CMs in vitro. Functional assessment of hiPSC-CMs was determined by multielectrode array (MEA), Ca2+ cycling and particle image velocimetry (PIV). Results demonstrated that Wk-4 cardiomyocytes showed enhanced synchronization and maturation as compared to Wk-1 & Wk-2. Furthermore, ultrastructural morphology of Wk-4 cardiomyocytes closely mimicked the non-failing (NF) adult human heart. Additionally, modulation of cardiac genes, cell cycle genes, and pluripotency markers were analyzed by real-time PCR and compared with NF human heart. Increasing expression of fatty acid oxidation enzymes at Wk-4 supported the switching to lipid metabolism. Differential regulation of 12 miRNAs was observed in Wk-1 vs Wk-4 cardiomyocytes. Overall, this study demonstrated that Wk-4 hiPSC-CMs showed improved functional, metabolic and ultrastructural maturation, which could play a crucial role in optimizing timing for cell transplantation studies and drug screening.


Assuntos
Diferenciação Celular , Perfilação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs/biossíntese , Miócitos Cardíacos/metabolismo , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , MicroRNAs/genética , Miócitos Cardíacos/citologia
2.
Life Sci ; 215: 119-127, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30399377

RESUMO

AIMS: Heart failure (HF) is a prevalent disease that is considered the foremost reason for hospitalization in the United States. Most protein kinases (PK) are activated in heart disease and their inhibition has been shown to improve cardiac function in both animal and human studies. However, little is known about the direct impact of PKA and PKC inhibitors on human cardiac contractile function. MATERIAL AND METHODS: We investigated the ex vivo effect of such inhibitors on force as well as on kinetics of left ventricular (LV) trabeculae dissected from non-failing and failing human hearts. In these experiments, we applied 0.5 µM of H-89 and GF109203X, which are PKA and PKC inhibitors, respectively, in comparison to their vehicle DMSO (0.05%). KEY FINDINGS AND CONCLUSION: Statistical analyses revealed no significant effect for H-89 and GF109203X on either contractile force or kinetics parameters of both non-failing and failing muscles even though they were used at a concentration higher than the reported IC50s and Kis. Therefore, several factors such as selectivity, concentration, and treatment time, which are related to these PK inhibitors according to previous studies require further exploration.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Insuficiência Cardíaca/tratamento farmacológico , Miocárdio/patologia , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Adulto , Idoso , Feminino , Coração/efeitos dos fármacos , Coração/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/metabolismo , Humanos , Indóis/administração & dosagem , Indóis/farmacologia , Concentração Inibidora 50 , Isoquinolinas/administração & dosagem , Isoquinolinas/farmacologia , Masculino , Maleimidas/administração & dosagem , Maleimidas/farmacologia , Pessoa de Meia-Idade , Contração Miocárdica/efeitos dos fármacos , Inibidores de Proteínas Quinases/administração & dosagem , Sulfonamidas/administração & dosagem , Sulfonamidas/farmacologia , Adulto Jovem
3.
J Appl Physiol (1985) ; 119(7): 799-806, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26251513

RESUMO

The accessible genetics and extensive skeletal musculature of the zebrafish make it a versatile and increasingly used model for studying muscle contraction. We here describe the development of an in vivo assay for measuring the contractile force of intact zebrafish at the larval stage. In addition, as proof of applicability, we have used this assay to quantify contractile strength of zebrafish larvae in a morphant model of deranged rbfox function. Average maximum tetanic (180 Hz) whole body forces produced by wild-type larvae at 2, 3, 4, and 5 days postfertilization amounted to 3.0, 7.2, 9.1, and 10.8 mN, respectively. To compare at potentially different stages of muscle development, we developed an immunohistological assay for empirically determining the cross-sectional area of larval trunk skeletal muscle to quantify muscle-specific force per cross-sectional area. At 4-5 days postfertilization, specific force amounts to ∼ 300 mN/mm(2), which is similar to fully developed adult mammalian skeletal muscle. We used these assays to measure contractile strength in zebrafish singly or doubly deficient for two rbfox paralogs, rbfox1l and rbfox2, which encode RNA-binding factors shown previously to modulate muscle function and muscle-specific splicing. We found rbfox2 morphants produce maximal tetanic forces similar to wild-type larvae, whereas rbfox1l morphants demonstrate significantly impaired function. rbfox1l/rbfox2 morphants are paralyzed, and their lack of contractile force production in our assay suggests that paralysis is a muscle-autonomous defect. These quantitative functional results allow measurement of muscle-specific phenotypes independent of neural input.


Assuntos
Contração Muscular/genética , Desenvolvimento Muscular/genética , Músculo Esquelético/fisiologia , Peixe-Zebra/fisiologia , Anatomia Transversal , Animais , Larva/fisiologia , Músculo Esquelético/anatomia & histologia , RNA/biossíntese , Proteínas de Ligação a RNA/fisiologia , Proteínas de Peixe-Zebra/fisiologia
4.
Am J Physiol Heart Circ Physiol ; 297(5): H1940-8, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19749159

RESUMO

It is well known that the strength of cardiac contraction is dependent on the cycle length, evidenced by the force-frequency relationship (FFR) and the existence of postrest potentiation (PRP). Because the contractile strength of the steady-state FFR and force-interval relationship involve instant intrinsic responses to cycle length as well as slower acting components such as posttranslational modification-based mechanisms, it remains unclear how cycle length intrinsically affects cardiac contraction and relaxation. To dissect the impact of cycle length changes from slower acting signaling components associated with persisting changes in cycle length, we developed a novel technique/protocol to study cycle length-dependent effects on cardiac function; twitch contractions of right ventricular rabbit trabeculae at different cycle lengths were randomized around a steady-state frequency. Patterns of cycle lengths that resulted in changes in force and/or relaxation times can now be identified and analyzed. Using this novel protocol, taking under 10 min to complete, we found that the duration of the cycle length before a twitch contraction ("primary" cycle length) positively correlated with force. In sharp contrast, the cycle length one ("secondary") or two ("tertiary") beats before the analyzed twitch correlated negatively with force. Using this protocol, we can quantify the intrinsic effect of cycle length on contractile strength while avoiding rundown and lengthiness that are often complications of FFR and PRP assessments. The data show that the history of up to three cycle lengths before a contraction influences myocardial contractility and that primary cycle length affects cardiac twitch dynamics in the opposite direction from secondary/tertiary cycle lengths.


Assuntos
Estimulação Cardíaca Artificial/métodos , Contração Miocárdica , Miocárdio/metabolismo , Transdução de Sinais , Função Ventricular Direita , Animais , Frequência Cardíaca , Técnicas In Vitro , Masculino , Força Muscular , Coelhos , Fatores de Tempo
5.
Eur J Heart Fail ; 9(8): 754-61, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17532261

RESUMO

BACKGROUND: Treatment of acute heart failure frequently requires positive-inotropic stimulation. However, there is still no inotropic agent available, which combines a favourable haemodynamic profile with low expenditure for energy metabolism. Pyruvate exhibits positive inotropic effects in vitro and in patients with heart failure. The effect on myocardial energy metabolism however remains unclear, but is meaningful in light of a clinical application. AIMS AND METHODS: We investigated the influence of pyruvate on contractility and oxygen consumption in isolated isometric contracting rabbit myocardium compared to beta-adrenergic stimulation with isoproterenol. RESULTS: Pyruvate (30 mM) increased developed force from 18.7+/-4.1 to 50.8+/-12.1 mN/mm2 (n=10, p<0.01). Force-time integral (FTI) increased by 329%, oxygen consumption assessed by diffusion-microelectrode technique increased from 2.86+/-0.30 mlO2/min*100 g to 6.28+/-1.28 mlO2/min*100 g (n=7, p<0.05). Economy of myocardial contraction calculated as the ratio of total FTI to oxygen consumption remained unchanged. In contrast, while isoproterenol (10 microM) produced a comparable increase in developed force from 21.4+/-8.3 to 67.3+/-15 mN/mm2 (n=7, p<0.01), FTI increased only by 260% and MVO2 increased from 2.96+/-0.43 to 6.12+/-1.01 mlO2/min*100 g (n=7, p<0.01); thus, economy decreased by 23% (n=7, p<0.05). CONCLUSION: Pyruvate does not impair economy of myocardial contraction while isoproterenol decreases economy. Regarding energy expenditure, pyruvate appears superior to isoproterenol for the purpose of positive inotropic stimulation.


Assuntos
Cardiotônicos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Miocárdio/metabolismo , Ácido Pirúvico/farmacologia , Animais , Relação Dose-Resposta a Droga , Feminino , Técnicas In Vitro , Indóis/farmacologia , Isoproterenol/farmacologia , Consumo de Oxigênio/efeitos dos fármacos , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA