Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Build Environ ; 2062021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34764540

RESUMO

Americans spend most of their time indoors at home, but comprehensive characterization of in-home air pollution is limited by the cost and size of reference-quality monitors. We assembled small "Home Health Boxes" (HHBs) to measure indoor PM2.5, PM10, CO2, CO, NO2, and O3 concentrations using filter samplers and low-cost sensors. Nine HHBs were collocated with reference monitors in the kitchen of an occupied home in Fort Collins, Colorado, USA for 168 h while wildfire smoke impacted local air quality. When HHB data were interpreted using gas sensor manufacturers' calibrations, HHBs and reference monitors (a) categorized the level of each gaseous pollutant similarly (as either low, elevated, or high relative to air quality standards) and (b) both indicated that gas cooking burners were the dominant source of CO and NO2 pollution; however, HHB and reference O3 data were not correlated. When HHB gas sensor data were interpreted using linear mixed calibration models derived via collocation with reference monitors, root-mean-square error decreased for CO2 (from 408 to 58 ppm), CO (645 to 572 ppb), NO2 (22 to 14 ppb), and O3 (21 to 7 ppb); additionally, correlation between HHB and reference O3 data improved (Pearson's r increased from 0.02 to 0.75). Mean 168-h PM2.5 and PM10 concentrations derived from nine filter samples were 19.4 µg m-3 (6.1% relative standard deviation [RSD]) and 40.1 µg m-3 (7.6% RSD). The 168-h PM2.5 concentration was overestimated by PMS5003 sensors (median sensor/filter ratio = 1.7) and underestimated slightly by SPS30 sensors (median sensor/filter ratio = 0.91).

2.
Geohealth ; 3(9): 266-283, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32159046

RESUMO

Despite improvements in air quality over the past 50 years, ambient air pollution remains an important public health issue in the United States. In particular, emissions from coal-fired power plants still have a substantial impact on both nearby and regional populations. Of particular concern is the potential for this impact to fall disproportionately on low-income communities and communities of color. We conducted a quantitative health impact assessment to estimate the health benefits of the proposed decommissioning of two coal-fired electricity generating stations in the Southern Front Range region of Colorado. We estimated changes in exposures to fine particulate matter and ozone using the Community Multiscale Air Quality model and predicted avoided health impacts and related economic values. We also quantitatively assessed the distribution of these benefits by population-level socioeconomic status. Across the study area, decommissioning the power plants would result in 2 (95% CI: 1-3) avoided premature deaths each year due to reduced PM2.5 exposures and greater reductions in hospitalizations and other morbidities. Health benefits resulting from the modeled shutdowns were greatest in areas with lower educational attainment and other economic indicators. Our results suggest that decommissioning these power plants and replacing them with zero-emissions sources could have broad public health benefits for residents of Colorado, with larger benefits for those that are socially disadvantaged. Our results also suggested that researchers and decision makers need to consider the unique demographics of their study areas to ensure that important opportunities to reduce health disparities associated with point-source pollution.

3.
Proc Natl Acad Sci U S A ; 111(29): 10473-8, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-25002466

RESUMO

Secondary organic aerosol (SOA) formed from the atmospheric oxidation of nonmethane organic gases (NMOG) is a major contributor to atmospheric aerosol mass. Emissions and smog chamber experiments were performed to investigate SOA formation from gasoline vehicles, diesel vehicles, and biomass burning. About 10-20% of NMOG emissions from these major combustion sources are not routinely speciated and therefore are currently misclassified in emission inventories and chemical transport models. The smog chamber data demonstrate that this misclassification biases model predictions of SOA production low because the unspeciated NMOG produce more SOA per unit mass than the speciated NMOG. We present new source-specific SOA yield parameterizations for these unspeciated emissions. These parameterizations and associated source profiles are designed for implementation in chemical transport models. Box model calculations using these new parameterizations predict that NMOG emissions from the top six combustion sources form 0.7 Tg y(-1) of first-generation SOA in the United States, almost 90% of which is from biomass burning and gasoline vehicles. About 85% of this SOA comes from unspeciated NMOG, demonstrating that chemical transport models need improved treatment of combustion emissions to accurately predict ambient SOA concentrations.


Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Compostos Orgânicos/análise , Atmosfera/química , Metano/análise , Smog/análise , Estados Unidos , Emissões de Veículos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA