Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(23)2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31805661

RESUMO

Defects in the extracellular matrix protein fibrillin-1 that perturb transforming growth factor beta (TGFß) bioavailability lead to Marfan syndrome (MFS). MFS is an autosomal-dominant disorder, which is associated with connective tissue and skeletal defects, among others. To date, it is unclear how biological sex impacts the structural and functional properties of bone in MFS. The aim of this study was to investigate the effects of sex on bone microarchitecture and mechanical properties in mice with deficient fibrillin-1, a model of human MFS. Bones of 11-week-old male and female Fbn1mgR/mgR mice were investigated. Three-dimensional micro-computed tomography of femora and vertebrae revealed a lower ratio of trabecular bone volume to tissue volume, reduced trabecular number and thickness, and greater trabecular separation in females vs. males. Three-point bending of femora revealed significantly lower post-yield displacement and work-to-fracture in females vs. males. Mechanistically, we found higher Smad2 and ERK1/2 phosphorylation in females vs. males, demonstrating a greater activation of TGFß signaling in females. In summary, the present findings show pronounced sex differences in the matrix and function of bones deficient in fibrillin-1 microfibrils. Consequently, sex-specific analysis of bone characteristics in patients with MFS may prove useful in improving the clinical management and life quality of these patients, through the development of sex-specific therapeutic approaches.


Assuntos
Osso e Ossos/metabolismo , Fibrilina-1/deficiência , Sistema de Sinalização das MAP Quinases , Síndrome de Marfan/metabolismo , Caracteres Sexuais , Animais , Osso e Ossos/patologia , Feminino , Fibrilina-1/metabolismo , Humanos , Masculino , Síndrome de Marfan/genética , Síndrome de Marfan/patologia , Camundongos , Camundongos Mutantes , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
2.
J Vis Exp ; (77)2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23912668

RESUMO

Small animal magnetic resonance imaging is an important tool to study cardiac function and changes in myocardial tissue. The high heart rates of small animals (200 to 600 beats/min) have previously limited the role of CMR imaging. Small animal Look-Locker inversion recovery (SALLI) is a T1 mapping sequence for small animals to overcome this problem. T1 maps provide quantitative information about tissue alterations and contrast agent kinetics. It is also possible to detect diffuse myocardial processes such as interstitial fibrosis or edema. Furthermore, from a single set of image data, it is possible to examine heart function and myocardial scarring by generating cine and inversion recovery-prepared late gadolinium enhancement-type MR images. The presented video shows step-by-step the procedures to perform small animal CMR imaging. Here it is presented with a healthy Sprague-Dawley rat, however naturally it can be extended to different cardiac small animal models.


Assuntos
Coração/anatomia & histologia , Coração/fisiologia , Imageamento por Ressonância Magnética/métodos , Miocárdio/citologia , Animais , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/fisiopatologia , Modelos Animais de Doenças , Miocárdio/patologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA