Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(3): 6104-6116, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35986851

RESUMO

Hydropower development can significantly mitigate climate change and reduce carbon emissions, but it can also have substantial negative impacts on river environments and fish biodiversity. Fish passage facilities are built to ensure sustainable hydropower development and the biodiversity of fish populations. The locations of the entrances to these facilities play a key role in their efficiency. This study presents a reliable approach that combines the swimming ability of fish and a numerical flow field simulation to determine the optimal location for a fish passage facility entrance. In this study, we used the Gujun Reservoir upstream of the Yangtze River as a case study. A field experiment was conducted, and the swimming abilities of eight endemic fish species in the upstream region of the Yangtze River were measured. Among the tested species, the fastest induced swimming speed (0.14 m/s) was achieved by Glyptothorax sinense, while the slowest critical swimming speed (0.30 m/s) was observed for Paracobitis potanini. We propose that the velocity near the fish passage facility entrance should be higher than the maximum induced swimming speed and lower than the minimum critical swimming speed, making the suitable range between 0.14 and 0.30 m/s. On this basis, velocity fields 500 m downstream of the dam of the Gujun Reservoir under 4 operating conditions with discharge flows of 5.7 m3/s, 23.3 m3/s, 32.5 m3/s, and 41.1 m3/s were calculated. The results showed that the flow field variation downstream of the dam was between 0.1 and 0.9 m/s. After comparing the suitable areas for the target species, the left bank at location 2 was recommended as the optimal location for the fish passage facility entrance in the Gujun Reservoir.


Assuntos
Peixes-Gato , Natação , Animais , Simulação por Computador , Biodiversidade , Desenvolvimento Sustentável
2.
Water Res ; 221: 118833, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35841786

RESUMO

The success of river habitat restoration relies on accurate assessment proxies. However, determining how to quantitatively assess the impact of multiple stressors during flood discharge from high dams in riverine ecosystems and where and how to implement more reliable recovery interventions remain challenges. Here, we developed a bottom-up mechanistic framework for assessing the effects of total dissolved gas supersaturation (TDGS) and hydrodynamics on fish habitat quality and applied it to the downstream river reach of the Xiangjiaba Dam in Southwest China. The results showed that the available habitat area of river sturgeon was the smallest, while Chinese sucker had the largest available habitat area among the three target species under all discharge scenarios. Although the TDGS levels were evenly mixed laterally, the habitat suitability index indicated that the suitable habitats were primarily within both sides of the river reach under all scenarios, which is contrary to findings based on the traditional TDGS risk assessment model. The traditional TDGS risk assessment model overestimates the impact of dams on habitats. This divergence reflected the sensitivity of the habitat assessment to fish habitat preferences, fish tolerance to TDGS and the biological response of fish under TDGS. Additionally, the priority areas for restoration can be identified by habitat suitability index with lower values. We simulated twenty-four schemes and found that interventions such as stone groups, ecological spur dike, water-retaining weir and river dredging can enhance habitat suitability for fish species under multiple stressors, providing novel insights into where and how to mitigate the impact of TDGS. Our findings offer a transferable framework for the quantitative evaluation of fish habitat and implementation of restoration management during dam flood discharge periods, thus providing a new perspective for biodiversity conservation and habitat restoration in dam-regulated rivers with TDGS around the world.


Assuntos
Ecossistema , Inundações , Animais , Biodiversidade , Peixes/fisiologia , Gases , Rios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA