Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Biomed Eng Online ; 23(1): 25, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419078

RESUMO

BACKGROUND: The accurate detection of eyelid tumors is essential for effective treatment, but it can be challenging due to small and unevenly distributed lesions surrounded by irrelevant noise. Moreover, early symptoms of eyelid tumors are atypical, and some categories of eyelid tumors exhibit similar color and texture features, making it difficult to distinguish between benign and malignant eyelid tumors, particularly for ophthalmologists with limited clinical experience. METHODS: We propose a hybrid model, HM_ADET, for automatic detection of eyelid tumors, including YOLOv7_CNFG to locate eyelid tumors and vision transformer (ViT) to classify benign and malignant eyelid tumors. First, the ConvNeXt module with an inverted bottleneck layer in the backbone of YOLOv7_CNFG is employed to prevent information loss of small eyelid tumors. Then, the flexible rectified linear unit (FReLU) is applied to capture multi-scale features such as texture, edge, and shape, thereby improving the localization accuracy of eyelid tumors. In addition, considering the geometric center and area difference between the predicted box (PB) and the ground truth box (GT), the GIoU_loss was utilized to handle cases of eyelid tumors with varying shapes and irregular boundaries. Finally, the multi-head attention (MHA) module is applied in ViT to extract discriminative features of eyelid tumors for benign and malignant classification. RESULTS: Experimental results demonstrate that the HM_ADET model achieves excellent performance in the detection of eyelid tumors. In specific, YOLOv7_CNFG outperforms YOLOv7, with AP increasing from 0.763 to 0.893 on the internal test set and from 0.647 to 0.765 on the external test set. ViT achieves AUCs of 0.945 (95% CI 0.894-0.981) and 0.915 (95% CI 0.860-0.955) for the classification of benign and malignant tumors on the internal and external test sets, respectively. CONCLUSIONS: Our study provides a promising strategy for the automatic diagnosis of eyelid tumors, which could potentially improve patient outcomes and reduce healthcare costs.


Assuntos
Neoplasias Palpebrais , Humanos , Neoplasias Palpebrais/diagnóstico , Área Sob a Curva , Custos de Cuidados de Saúde
2.
Cell Rep Med ; 4(7): 101095, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37385253

RESUMO

Artificial intelligence (AI) has great potential to transform healthcare by enhancing the workflow and productivity of clinicians, enabling existing staff to serve more patients, improving patient outcomes, and reducing health disparities. In the field of ophthalmology, AI systems have shown performance comparable with or even better than experienced ophthalmologists in tasks such as diabetic retinopathy detection and grading. However, despite these quite good results, very few AI systems have been deployed in real-world clinical settings, challenging the true value of these systems. This review provides an overview of the current main AI applications in ophthalmology, describes the challenges that need to be overcome prior to clinical implementation of the AI systems, and discusses the strategies that may pave the way to the clinical translation of these systems.


Assuntos
Inteligência Artificial , Oftalmologia , Humanos , Oftalmologia/métodos
3.
Ann Transl Med ; 9(7): 550, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33987248

RESUMO

BACKGROUND: Lens opacity seriously affects the visual development of infants. Slit-illumination images play an irreplaceable role in lens opacity detection; however, these images exhibited varied phenotypes with severe heterogeneity and complexity, particularly among pediatric cataracts. Therefore, it is urgently needed to explore an effective computer-aided method to automatically diagnose heterogeneous lens opacity and to provide appropriate treatment recommendations in a timely manner. METHODS: We integrated three different deep learning networks and a cost-sensitive method into an ensemble learning architecture, and then proposed an effective model called CCNN-Ensemble [ensemble of cost-sensitive convolutional neural networks (CNNs)] for automatic lens opacity detection. A total of 470 slit-illumination images of pediatric cataracts were used for training and comparison between the CCNN-Ensemble model and conventional methods. Finally, we used two external datasets (132 independent test images and 79 Internet-based images) to further evaluate the model's generalizability and effectiveness. RESULTS: Experimental results and comparative analyses demonstrated that the proposed method was superior to conventional approaches and provided clinically meaningful performance in terms of three grading indices of lens opacity: area (specificity and sensitivity; 92.00% and 92.31%), density (93.85% and 91.43%) and opacity location (95.25% and 89.29%). Furthermore, the comparable performance on the independent testing dataset and the internet-based images verified the effectiveness and generalizability of the model. Finally, we developed and implemented a website-based automatic diagnosis software for pediatric cataract grading diagnosis in ophthalmology clinics. CONCLUSIONS: The CCNN-Ensemble method demonstrates higher specificity and sensitivity than conventional methods on multi-source datasets. This study provides a practical strategy for heterogeneous lens opacity diagnosis and has the potential to be applied to the analysis of other medical images.

4.
Biomed Eng Online ; 16(1): 132, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29157240

RESUMO

BACKGROUND: Ocular images play an essential role in ophthalmological diagnoses. Having an imbalanced dataset is an inevitable issue in automated ocular diseases diagnosis; the scarcity of positive samples always tends to result in the misdiagnosis of severe patients during the classification task. Exploring an effective computer-aided diagnostic method to deal with imbalanced ophthalmological dataset is crucial. METHODS: In this paper, we develop an effective cost-sensitive deep residual convolutional neural network (CS-ResCNN) classifier to diagnose ophthalmic diseases using retro-illumination images. First, the regions of interest (crystalline lens) are automatically identified via twice-applied Canny detection and Hough transformation. Then, the localized zones are fed into the CS-ResCNN to extract high-level features for subsequent use in automatic diagnosis. Second, the impacts of cost factors on the CS-ResCNN are further analyzed using a grid-search procedure to verify that our proposed system is robust and efficient. RESULTS: Qualitative analyses and quantitative experimental results demonstrate that our proposed method outperforms other conventional approaches and offers exceptional mean accuracy (92.24%), specificity (93.19%), sensitivity (89.66%) and AUC (97.11%) results. Moreover, the sensitivity of the CS-ResCNN is enhanced by over 13.6% compared to the native CNN method. CONCLUSION: Our study provides a practical strategy for addressing imbalanced ophthalmological datasets and has the potential to be applied to other medical images. The developed and deployed CS-ResCNN could serve as computer-aided diagnosis software for ophthalmologists in clinical application.


Assuntos
Análise Custo-Benefício , Diagnóstico por Computador/economia , Diagnóstico por Imagem , Oftalmopatias/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Automação , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA