Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Lab Chip ; 24(10): 2774-2790, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38682609

RESUMO

The fabrication of microfluidic devices has progressed from cleanroom manufacturing to replica molding in polymers, and more recently to direct manufacturing by subtractive (e.g., laser machining) and additive (e.g., 3D printing) techniques, notably digital light processing (DLP) photopolymerization. However, many methods require technical expertise and DLP 3D printers remain expensive at a cost ∼15-30 K USD with ∼8 M pixels that are 25-40 µm in size. Here, we introduce (i) the use of low-cost (∼150-600 USD) liquid crystal display (LCD) photopolymerization 3D printing with ∼8-58 M pixels that are 18-35 µm in size for direct microfluidic device fabrication, and (ii) a poly(ethylene glycol) diacrylate-based ink developed for LCD 3D printing (PLInk). We optimized PLInk for high resolution, fast 3D printing and biocompatibility while considering the illumination inhomogeneity and low power density of LCD 3D printers. We made lateral features as small as 75 µm, 22 µm-thick embedded membranes, and circular channels with a 110 µm radius. We 3D printed microfluidic devices previously manufactured by other methods, including an embedded 3D micromixer, a membrane microvalve, and an autonomous capillaric circuit (CC) deployed for interferon-γ detection with excellent performance (limit of detection: 12 pg mL-1, CV: 6.8%). We made PLInk-based organ-on-a-chip devices in 384-well plate format and produced 3420 individual devices within an 8 h print run. We used the devices to co-culture two spheroids separated by a vascular barrier over 5 days and observed endothelial sprouting, cellular reorganization, and migration. LCD 3D printing together with tailored inks pave the way for democratizing access to high-resolution manufacturing of ready-to-use microfluidic and organ-on-a-chip devices by anyone, anywhere.


Assuntos
Dispositivos Lab-On-A-Chip , Cristais Líquidos , Impressão Tridimensional , Cristais Líquidos/química , Humanos , Polietilenoglicóis/química , Desenho de Equipamento , Técnicas Analíticas Microfluídicas/instrumentação , Sistemas Microfisiológicos
2.
Adv Healthc Mater ; 13(9): e2303708, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37990819

RESUMO

Artificial organs and organs-on-a-chip (OoC) are of great clinical and scientific interest and have recently been made by additive manufacturing, but depend on, and benefit from, biocompatible, biodegradable, and soft materials. Poly(octamethylene maleate (anhydride) citrate (POMaC) meets these criteria and has gained popularity, and as in principle, it can be photocured and is amenable to vat-photopolymerization (VP) 3D printing, but only low-resolution structures have been produced so far. Here, a VP-POMaC ink is introduced and 3D printing of 80 µm positive features and complex 3D structures is demonstrated using low-cost (≈US$300) liquid-crystal display (LCD) printers. The ink includes POMaC, a diluent and porogen additive to reduce viscosity within the range of VP, and a crosslinker to speed up reaction kinetics. The mechanical properties of the cured ink are tuned to match the elastic moduli of different tissues simply by varying the porogen concentration. The biocompatibility is assessed by cell culture which yielded 80% viability and the potential for tissue engineering illustrated with a 3D-printed gyroid seeded with cells. VP-POMaC and low-cost LCD printers make the additive manufacturing of high resolution, elastomeric, and biodegradable constructs widely accessible, paving the way for a myriad of applications in tissue engineering and 3D cell culture as demonstrated here, and possibly in OoC, implants, wearables, and soft robotics.


Assuntos
Elastômeros , Engenharia Tecidual , Elastômeros/química , Impressão Tridimensional
3.
J Proteome Res ; 14(4): 1872-9, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25668573

RESUMO

Antibody microarrays can detect multiple proteins simultaneously, but the need for bulky and expensive fluorescence scanners limits their adaptation in clinical settings. Here we introduce a 15-plex enzyme-mediated silver enhanced sandwich immunoassay (SENSIA) on a microarray as an economic alternative to conventional fluorescence microarray assays. We compared several gold and silver amplification schemes, optimized HRP-mediated silver amplification, and evaluated the use of flatbed scanners for microarray quantification. Using the optimized assay condition, we established binding curves for 15 proteins using both SENSIA and conventional fluorescence microarray assays and compared their limits of detection (LODs) and dynamic ranges (DRs). We found that the LODs for all proteins are in the pg/mL range, with LODs for 12 proteins below 10 pg/mL. All but two proteins (ENDO and IL4) have similar LODs (less than 10-fold difference) and all but two proteins (IL1b and MCP1) are similar in DR (less than 1.5-log difference). Furthermore, we spiked six proteins in diluted serum and measured them by both silver enhancement and fluorescence detection and found a good agreement (R(2) > 0.9) between the two methods, suggesting that a complex matrix such as serum has a minimal effect on the measurement. By combining enzyme-mediated silver enhancement and consumer electronics for optical detection, SENSIA presents a new opportunity for low-cost high-sensitivity multiplex immunoassays for clinical applications.


Assuntos
Anticorpos/farmacologia , Imunoensaio/métodos , Nanopartículas Metálicas , Análise Serial de Proteínas/métodos , Proteínas/análise , Limite de Detecção , Prata/metabolismo
4.
Small ; 9(19): 3308-13, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-23606620

RESUMO

A novel method is introduced for ultrahigh throughput and ultralow cost patterning of biomolecules with nanometer resolution and novel 2D digital nanodot gradients (DNGs) with mathematically defined slopes are created. The technique is based on lift-off nanocontact printing while using high-resolution photopolymer stamps that are rapidly produced at a low cost through double replication from Si originals. Printed patterns with 100 nm features are shown. DNGs with varying spacing between the dots and a record dynamic range of 4400 are produced; 64 unique DNGs, each with hundreds of thousands of dots, are inked and printed in 5.5 min. The adhesive response and haptotaxis of C2C12 myoblast cells on DNGs demonstrated their biofunctionality. The great flexibility in pattern design, the massive parallel ability, the ultra low cost, and the extreme ease of polymer lift-off nanocontact printing will facilitate its use for various biological and medical applications.


Assuntos
Nanotecnologia/métodos , Proteínas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA