Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Skeletal Radiol ; 51(4): 737-745, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34302499

RESUMO

The estimation of growth rate of lytic bone tumors based on conventional radiography has been extensively studied. While benign tumors exhibit slow growth, malignant tumors are more likely to show fast growth. The most frequently used algorithm for grading of growth rate on conventional radiography was published by Gwilym Lodwick. Based on the evaluation of the four descriptors (1) type of bone destruction (including the subdescriptor "margin" for geographic lesions), (2) penetration of cortex, (3) presence of a sclerotic rim, and (4) expanded shell, an overall growth grade (IA, IB, IC, II, III) can be assigned, with higher grade representing faster tumor growth. In this article, we provide an easy-to-use decision tree of Lodwick's original grading algorithm, suitable for teaching of students and residents. Subtleties of the grading algorithm and potential pitfalls in clinical practice are explained and illustrated. Exemplary conventional radiographs provided for each descriptor in the decision tree may be used as a guide and atlas for assisting in evaluation of individual features in daily clinical practice.


Assuntos
Neoplasias Ósseas , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/patologia , Árvores de Decisões , Humanos , Radiografia
2.
PLoS One ; 14(2): e0212106, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30763375

RESUMO

OBJECTIVE: Aim of this study was, to demonstrate the feasibility of high-resolution grating-based X-ray phase-contrast computed tomography (PCCT) for quantitative assessment of cartilage. MATERIALS AND METHODS: In an experimental setup, 12 osteochondral samples were harvested from n = 6 bovine knees (n = 2 each). From each knee, one cartilage sample was degraded using 2.5% Trypsin. In addition to PCCT and biomechanical cartilage stiffness measurements, 3T and 7T MRI was performed including MSME SE T2 and ME GE T2* mapping sequences for relaxationtime measurements. Paired t-tests and receiver operating characteristics (ROC) curves were used for statistical analyses. RESULTS: PCCT provided high-resolution images for improved morphological cartilage evaluation as compared to 3T and 7T MRI. Quantitative analyses revealed significant differences between the superficial and the deep cartilage layer for T2 mapping as well as for PCCT (P<0.05). No significant difference was detected for PCCT between healthy and degraded samples (P>0.05). MRI and stiffness measurements showed significant differences between healthy and degraded osteochondral samples. Accuracy in the prediction of cartilage degradation was excellent for MRI and biomechanical analyses. CONCLUSION: In conclusion, high-resolution grating-based X-ray PCCT cartilage imaging is feasible. In addition to MRI and biomechanical analyses it provides complementary, water content independent, information for improved morphological and quantitative characterization of articular cartilage ultrastructure.


Assuntos
Cartilagem/diagnóstico por imagem , Cartilagem/metabolismo , Imageamento Tridimensional , Imageamento por Ressonância Magnética/métodos , Razão Sinal-Ruído , Tomografia Computadorizada por Raios X/métodos , Animais , Cartilagem/citologia , Bovinos , Estudos de Viabilidade , Membro Posterior/diagnóstico por imagem , Imageamento por Ressonância Magnética/instrumentação , Imagens de Fantasmas , Tomografia Computadorizada por Raios X/instrumentação
3.
Cartilage ; 8(3): 272-282, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28618873

RESUMO

Objective To design a simple magnetic resonance (MR)-based assessment system for quantification of osteochondral defect severity prior to cartilage repair surgery at the knee. Design The new scoring tool was supposed to include 3 different parameters: (1) cartilage defect size, (2) depth/morphology of the cartilage defect, and (3) subchondral bone quality, resulting in a specific 3-digit code. A clearly defined numeric score was developed, resulting in a final score of 0 to 100. Defect severity grades I through IV were defined. For intra- and interobserver agreement, defects were assessed by 2 independent readers on preoperative knee MR images of n = 44 subjects who subsequently received cartilage repair surgery. For statistical analyses, mean values ± standard deviation (SD), interclass correlation coefficients (ICC), and linear weighted kappa values were calculated. Results The mean total Area Measurement And DEpth & Underlying Structures (AMADEUS) score was 48 ± 24, (range, 0-85). The mean defect size was 2.8 ± 2.6 cm2. There were 36 of 44 full-thickness defects. The subchondral bone showed defects in 21 of 44 cases. Kappa values for intraobserver reliability ranged between 0.82 and 0.94. Kappa values for interobserver reliability ranged between 0.38 and 0.85. Kappa values for AMADEUS grade were 0.75 and 0.67 for intra- and interobserver agreement, respectively. ICC scores for the AMADEUS total score were 0.97 and 0.96 for intra- and interobserver agreement, respectively. Conclusions The AMADEUS score and classification system allows reliable severity encoding, scoring and grading of osteochondral defects on knee MR images, which is easily clinically applicable in daily practice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA