Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 241(4): 1866-1876, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38124293

RESUMO

Image-based high-throughput phenotyping promises the rapid determination of functional traits in large plant populations. However, interpretation of some traits - such as those related to photosynthesis or transpiration rates - is only meaningful if the irradiance absorbed by the measured leaves is known, which can differ greatly between different parts of the same plant and within canopies. No feasible method currently exists to rapidly measure absorbed irradiance in three-dimensional plants and canopies. We developed a method and protocols to derive absorbed irradiance at any visible part of a canopy with a thermal camera, by fitting a leaf energy balance model to transient changes in leaf temperature. Leaves were exposed to short light pulses (30 s) that were not long enough to trigger stomatal opening but strong enough to induce transient changes in leaf temperature that was proportional to the absorbed irradiance. The method was successfully validated against point measurements of absorbed irradiance in plant species with relatively simple architecture (sweet pepper, cucumber, tomato, and lettuce). Once calibrated, the model was used to produce absorbed irradiance maps from thermograms. Our method opens new avenues for the interpretation of plant responses derived from imaging techniques and can be adapted to existing high-throughput phenotyping platforms.


Assuntos
Cucumis sativus , Folhas de Planta , Folhas de Planta/fisiologia , Fotossíntese/fisiologia , Plantas , Fenótipo
2.
Plant Cell Environ ; 41(3): 589-604, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29243271

RESUMO

A dynamic model of leaf CO2 assimilation was developed as an extension of the canonical steady-state model, by adding the effects of energy-dependent non-photochemical quenching (qE), chloroplast movement, photoinhibition, regulation of enzyme activity in the Calvin cycle, metabolite concentrations, and dynamic CO2 diffusion. The model was calibrated and tested successfully using published measurements of gas exchange and chlorophyll fluorescence on Arabidopsis thaliana ecotype Col-0 and several photosynthetic mutants and transformants affecting the regulation of Rubisco activity (rca-2 and rwt43), non-photochemical quenching (npq4-1 and npq1-2), and sucrose synthesis (spsa1). The potential improvements on CO2 assimilation under fluctuating irradiance that can be achieved by removing the kinetic limitations on the regulation of enzyme activities, electron transport, and stomatal conductance were calculated in silico for different scenarios. The model predicted that the rates of activation of enzymes in the Calvin cycle and stomatal opening were the most limiting (up to 17% improvement) and that effects varied with the frequency of fluctuations. On the other hand, relaxation of qE and chloroplast movement had a strong effect on average low-irradiance CO2 assimilation (up to 10% improvement). Strong synergies among processes were found, such that removing all kinetic limitations simultaneously resulted in improvements of up to 32%.


Assuntos
Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Modelos Biológicos , Folhas de Planta/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calibragem , Clorofila/metabolismo , Transporte de Elétrons , Luz , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Mutação , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Estômatos de Plantas/fisiologia , Ribulose-Bifosfato Carboxilase/economia , Ribulose-Bifosfato Carboxilase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA