Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 248: 125986, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37506792

RESUMO

Chitosan/aspartic acid hydrogels were synthesized for MB dye removal from textile aqueous effluents with different ratios by gelation of chitosan with non-toxic gelling agent, crosslinker, glutaraldehyde (Glu). The obtained hydrogels were characterized by spectral and morphological techniques. The characterization techniques confirmed successful preparations and MB dye adsorption. Batch experiments were done to investigate the effects of adsorbent dose, pH, contact time, temperature, and initial MB dye concentration. The optimum conditions were: adsorbent dose 0.1 g, pH 5, contact time 30 min, and temperature 25 °C for Chitosan-Aspartic Acid Hydrogel 1 (CSAA-HG1) and adsorbent dose 0.4 g, pH 2, contact time 60 min, temperature 25 °C for Chitosan-Aspartic Acid Hydrogel 2 (CSAA-HG2). Adsorption capacity of newly hydrogels CSAA-HG1,2 was compared with each other. Adsorption efficiencies reached 99.85 % for CSAA-HG1 and 99.88 % for CSAA-HG2. MB dye adsorption on CSAA-HG1,2 followed Freundlich isotherm model (R2 = 0.94 and 0.92, respectively). Both adsorbents exhibited pseudo-second-order kinetics for MB dye adsorption (R2 = 1). The negative ΔHo indicated that the MB dye adsorption was exothermic, negative ΔGo confirmed that MB dye adsorption process was spontaneous and low values of ∆So indicated low degree of freedom, ordered MB dye molecules on CSAA-HG1,2 surfaces.


Assuntos
Quitosana , Poluentes Químicos da Água , Azul de Metileno/química , Quitosana/química , Ácido Aspártico , Hidrogéis/química , Análise Custo-Benefício , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Adsorção , Cinética , Corantes/química , Termodinâmica
2.
Environ Monit Assess ; 195(6): 693, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37204517

RESUMO

In the present era of significant industrial development, the presence and dispersal of countless water contaminants in water bodies worldwide have rendered them unsuitable for various forms of life. Recently, the awareness of environmental sustainability for wastewater treatment has increased rapidly in quest of meeting the global water demand. Despite numerous conventional adsorbents on deck, exploring low-cost and efficient adsorbents is interesting. Clays and clays-based geopolymers are intensively used as natural, alternative, and promising adsorbents to meet the goals for combating climate change and providing low carbon, heat, and power. In this narrative work, the present review highlights the persistence of some inorganic/organic water pollutants in aquatic bodies. Moreover, it comprehensively summarizes the advancement in the strategies associated with synthesizing clays and their based geopolymers, characterization techniques, and applications in water treatment. Furthermore, the critical challenges, opportunities, and future prospective regarding the circular economy are additionally outlined. This review expounded on the ongoing research studies for leveraging these eco-friendly materials to address water decontamination. The adsorption mechanisms of clays-based geopolymers are successfully presented. Therefore, the present review is believed to deepen insights into wastewater treatment using clays and clays-based geopolymers as a groundbreaking aspect in accord with the waste-to-wealth concept toward broader sustainable development goals.


Assuntos
Poluentes Químicos da Água , Poluentes da Água , Purificação da Água , Águas Residuárias , Argila , Monitoramento Ambiental , Adsorção , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA