Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Biol Rep ; 51(1): 150, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236489

RESUMO

BACKGROUND: Azo dyes are widely used in the food industry to prevent color loss during processing and storage of products. This study aimed to investigate the effect of a diazo dye Brilliant Black PN (E151) on oxidative stress-related parameters in fruit flies (Drosophila melanogaster) at biochemical and molecular levels. METHODS AND RESULTS: Third instar larvae were transferred to a medium containing the dye at different doses (1, 2.5, and 5 mg/mL). Gene expression and activity of superoxide dismutase, catalase (CAT), glutathione peroxidase (GPX), and acetylcholinesterase (AChE) enzymes were determined in the heads of adult flies obtained from these larvae. In addition, the glutathione (GSH) and malondialdehyde levels were measured using spectrophotometric analysis. Mitochondrial DNA (mtDNA) copy number was also detected by real-time PCR. The results showed that treatment with 5 mg/mL of the dye caused a decrease in both gene expression and enzyme activity of CAT and GPx. Moreover, the same dose of dye treatment decreased AChE activity, GSH level, and mtDNA copy number. CONCLUSIONS: As a result, Brilliant Black PN dye can trigger toxicity by altering the level and activity of oxidative stress-related biomarkers in a dose-dependent manner. Therefore, more comprehensive studies are needed to elucidate the side effect mechanism and toxicity of this dye.


Assuntos
Acetilcolinesterase , Drosophila melanogaster , Animais , Drosophila melanogaster/genética , Acetilcolinesterase/genética , Drosophila , Compostos Azo/toxicidade , DNA Mitocondrial/genética , Glutationa , Larva , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA