RESUMO
A global disaster, such as the recent Covid-19 pandemic, affects every aspect of our lives and there is a need to investigate these highly complex phenomena if one aims to diminish their impact in the health of the population, as well as their socio-economic stability. In this paper we present an attempt to understand the role of the governmental authorities and the response of the rest of the population facing such emergencies. We present a mathematical model that takes into account the epidemiological features of the pandemic and also the actions of people responding to it, focusing only on three aspects of the system, namely, the fear of catching this serious disease, the impact on the economic activities and the compliance of the people to the mitigating measures adopted by the authorities. We apply the model to the specific case of Spain, since there are accurate data available about these three features. We focused on tourism as an example of the economic activity, since this sector of economy is one of the most likely to be affected by the restrictions imposed by the authorities, and because it represents an important part of Spanish economy. The results of numerical calculations agree with the empirical data in such a way that we can acquire a better insight of the different processes at play in such a complex situation, and also in other different circumstances.
Assuntos
COVID-19 , Desastres , Humanos , Espanha/epidemiologia , Pandemias , COVID-19/epidemiologia , Fatores SocioeconômicosRESUMO
Importance: Sarcopenia is an established prognostic factor in patients with head and neck squamous cell carcinoma (HNSCC); the quantification of sarcopenia assessed by imaging is typically achieved through the skeletal muscle index (SMI), which can be derived from cervical skeletal muscle segmentation and cross-sectional area. However, manual muscle segmentation is labor intensive, prone to interobserver variability, and impractical for large-scale clinical use. Objective: To develop and externally validate a fully automated image-based deep learning platform for cervical vertebral muscle segmentation and SMI calculation and evaluate associations with survival and treatment toxicity outcomes. Design, Setting, and Participants: For this prognostic study, a model development data set was curated from publicly available and deidentified data from patients with HNSCC treated at MD Anderson Cancer Center between January 1, 2003, and December 31, 2013. A total of 899 patients undergoing primary radiation for HNSCC with abdominal computed tomography scans and complete clinical information were selected. An external validation data set was retrospectively collected from patients undergoing primary radiation therapy between January 1, 1996, and December 31, 2013, at Brigham and Women's Hospital. The data analysis was performed between May 1, 2022, and March 31, 2023. Exposure: C3 vertebral skeletal muscle segmentation during radiation therapy for HNSCC. Main Outcomes and Measures: Overall survival and treatment toxicity outcomes of HNSCC. Results: The total patient cohort comprised 899 patients with HNSCC (median [range] age, 58 [24-90] years; 140 female [15.6%] and 755 male [84.0%]). Dice similarity coefficients for the validation set (n = 96) and internal test set (n = 48) were 0.90 (95% CI, 0.90-0.91) and 0.90 (95% CI, 0.89-0.91), respectively, with a mean 96.2% acceptable rate between 2 reviewers on external clinical testing (n = 377). Estimated cross-sectional area and SMI values were associated with manually annotated values (Pearson r = 0.99; P < .001) across data sets. On multivariable Cox proportional hazards regression, SMI-derived sarcopenia was associated with worse overall survival (hazard ratio, 2.05; 95% CI, 1.04-4.04; P = .04) and longer feeding tube duration (median [range], 162 [6-1477] vs 134 [15-1255] days; hazard ratio, 0.66; 95% CI, 0.48-0.89; P = .006) than no sarcopenia. Conclusions and Relevance: This prognostic study's findings show external validation of a fully automated deep learning pipeline to accurately measure sarcopenia in HNSCC and an association with important disease outcomes. The pipeline could enable the integration of sarcopenia assessment into clinical decision making for individuals with HNSCC.
Assuntos
Aprendizado Profundo , Neoplasias de Cabeça e Pescoço , Sarcopenia , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico por imagem , Estudos Retrospectivos , Sarcopenia/diagnóstico por imagem , Sarcopenia/complicações , Neoplasias de Cabeça e Pescoço/complicações , Neoplasias de Cabeça e Pescoço/diagnóstico por imagemRESUMO
Purpose: Sarcopenia is an established prognostic factor in patients diagnosed with head and neck squamous cell carcinoma (HNSCC). The quantification of sarcopenia assessed by imaging is typically achieved through the skeletal muscle index (SMI), which can be derived from cervical neck skeletal muscle (SM) segmentation and cross-sectional area. However, manual SM segmentation is labor-intensive, prone to inter-observer variability, and impractical for large-scale clinical use. To overcome this challenge, we have developed and externally validated a fully-automated image-based deep learning (DL) platform for cervical vertebral SM segmentation and SMI calculation, and evaluated the relevance of this with survival and toxicity outcomes. Materials and Methods: 899 patients diagnosed as having HNSCC with CT scans from multiple institutes were included, with 335 cases utilized for training, 96 for validation, 48 for internal testing and 393 for external testing. Ground truth single-slice segmentations of SM at the C3 vertebra level were manually generated by experienced radiation oncologists. To develop an efficient method of segmenting the SM, a multi-stage DL pipeline was implemented, consisting of a 2D convolutional neural network (CNN) to select the middle slice of C3 section and a 2D U-Net to segment SM areas. The model performance was evaluated using the Dice Similarity Coefficient (DSC) as the primary metric for the internal test set, and for the external test set the quality of automated segmentation was assessed manually by two experienced radiation oncologists. The L3 skeletal muscle area (SMA) and SMI were then calculated from the C3 cross sectional area (CSA) of the auto-segmented SM. Finally, established SMI cut-offs were used to perform further analyses to assess the correlation with survival and toxicity endpoints in the external institution with univariable and multivariable Cox regression. Results: DSCs for validation set (n = 96) and internal test set (n = 48) were 0.90 (95% CI: 0.90 - 0.91) and 0.90 (95% CI: 0.89 - 0.91), respectively. The predicted CSA is highly correlated with the ground-truth CSA in both validation (r = 0.99, p < 0.0001) and test sets (r = 0.96, p < 0.0001). In the external test set (n = 377), 96.2% of the SM segmentations were deemed acceptable by consensus expert review. Predicted SMA and SMI values were highly correlated with the ground-truth values, with Pearson r ß 0.99 (p < 0.0001) for both the female and male patients in all datasets. Sarcopenia was associated with worse OS (HR 2.05 [95% CI 1.04 - 4.04], p = 0.04) and longer PEG tube duration (median 162 days vs. 134 days, HR 1.51 [95% CI 1.12 - 2.08], p = 0.006 in multivariate analysis. Conclusion: We developed and externally validated a fully-automated platform that strongly correlates with imaging-assessed sarcopenia in patients with H&N cancer that correlates with survival and toxicity outcomes. This study constitutes a significant stride towards the integration of sarcopenia assessment into decision-making for individuals diagnosed with HNSCC. SUMMARY STATEMENT: In this study, we developed and externally validated a deep learning model to investigate the impact of sarcopenia, defined as the loss of skeletal muscle mass, on patients with head and neck squamous cell carcinoma (HNSCC) undergoing radiotherapy. We demonstrated an efficient, fullyautomated deep learning pipeline that can accurately segment C3 skeletal muscle area, calculate cross-sectional area, and derive a skeletal muscle index to diagnose sarcopenia from a standard of care CT scan. In multi-institutional data, we found that pre-treatment sarcopenia was associated with significantly reduced overall survival and an increased risk of adverse events. Given the increased vulnerability of patients with HNSCC, the assessment of sarcopenia prior to radiotherapy may aid in informed treatment decision-making and serve as a predictive marker for the necessity of early supportive measures.
RESUMO
Human behaviour follows a 24-h rhythm and is known to be governed by the individual chronotypes. Due to the widespread use of technology in our daily lives, it is possible to record the activities of individuals through their different digital traces. In the present study we utilise a large mobile phone communication dataset containing time stamps of calls and text messages to study the circadian rhythms of anonymous users in a European country. After removing the effect of the synchronization of East-West sun progression with the calling activity, we used two closely related approaches to heuristically compute the chronotypes of the individuals in the dataset, to identify them as morning persons or "larks" and evening persons or "owls". Using the computed chronotypes we showed how the chronotype is largely dependent on age with younger cohorts being more likely to be owls than older cohorts. Moreover, our analysis showed how on average females have distinctly different chronotypes from males. Younger females are more larkish than males while older females are more owlish. Finally, we also studied the period of low calling activity for each of the users which is considered as a marker of their sleep period during the night. We found that while "extreme larks" tend to sleep more than "extreme owls" on the weekends, we do not observe much variation between them on weekdays. In addition, we have observed that women tend to sleep even less than males on weekdays while there is not much difference between them on the weekends.
RESUMO
Timings of human activities are marked by circadian clocks which in turn are entrained to different environmental signals. In an urban environment the presence of artificial lighting and various social cues tend to disrupt the natural entrainment with the sunlight. However, it is not completely understood to what extent this is the case. Here we exploit the large-scale data analysis techniques to study the mobile phone calling activity of people in large cities to infer the dynamics of urban daily rhythms. From the calling patterns of about 1,000,000 users spread over different cities but lying inside the same time-zone, we show that the onset and termination of the calling activity synchronizes with the east-west progression of the sun. We also find that the onset and termination of the calling activity of users follows a yearly dynamics, varying across seasons, and that its timings are entrained to solar midnight. Furthermore, we show that the average mid-sleep time of people living in urban areas depends on the age and gender of each cohort as a result of biological and social factors.
Assuntos
Telefone Celular , Atividades Humanas , Movimento , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Relógios Circadianos , Ritmo Circadiano , Cidades , Coleta de Dados , Meio Ambiente , Feminino , Humanos , Luz , Iluminação , Masculino , Pessoa de Meia-Idade , Probabilidade , Estações do Ano , Sono , Temperatura , Fatores de Tempo , População Urbana , Adulto JovemRESUMO
Reputation is an important social construct in science, which enables informed quality assessments of both publications and careers of scientists in the absence of complete systemic information. However, the relation between reputation and career growth of an individual remains poorly understood, despite recent proliferation of quantitative research evaluation methods. Here, we develop an original framework for measuring how a publication's citation rate Δc depends on the reputation of its central author i, in addition to its net citation count c. To estimate the strength of the reputation effect, we perform a longitudinal analysis on the careers of 450 highly cited scientists, using the total citations Ci of each scientist as his/her reputation measure. We find a citation crossover c×, which distinguishes the strength of the reputation effect. For publications with c < c×, the author's reputation is found to dominate the annual citation rate. Hence, a new publication may gain a significant early advantage corresponding to roughly a 66% increase in the citation rate for each tenfold increase in Ci. However, the reputation effect becomes negligible for highly cited publications meaning that, for c ≥ c×, the citation rate measures scientific impact more transparently. In addition, we have developed a stochastic reputation model, which is found to reproduce numerous statistical observations for real careers, thus providing insight into the microscopic mechanisms underlying cumulative advantage in science.
Assuntos
Bibliometria , Mobilidade Ocupacional , Editoração/estatística & dados numéricos , Pesquisadores/normas , Pesquisa/normas , Simulação por Computador , Modelos Estatísticos , Método de Monte Carlo , Pesquisa/estatística & dados numéricosRESUMO
Diffusion of innovation can be interpreted as a social spreading phenomenon governed by the impact of media and social interactions. Although these mechanisms have been identified by quantitative theories, their role and relative importance are not entirely understood, as empirical verification has so far been hindered by the lack of appropriate data. Here we analyse a dataset recording the spreading dynamics of the world's largest Voice over Internet Protocol service to empirically support the assumptions behind models of social contagion. We show that the rate of spontaneous service adoption is constant, the probability of adoption via social influence is linearly proportional to the fraction of adopting neighbours, and the rate of service termination is time-invariant and independent of the behaviour of peers. By implementing the detected diffusion mechanisms into a dynamical agent-based model, we are able to emulate the adoption dynamics of the service in several countries worldwide. This approach enables us to make medium-term predictions of service adoption and disclose dependencies between the dynamics of innovation spreading and the socio-economic development of a country.
Assuntos
Informática , Internet , Modelos Teóricos , HumanosRESUMO
Modern information and communication technologies, especially the Internet, have diminished the role of spatial distances and territorial boundaries on the access and transmissibility of information. This has enabled scientists for closer collaboration and internationalization. Nevertheless, geography remains an important factor affecting the dynamics of science. Here we present a systematic analysis of citation and collaboration networks between cities and countries, by assigning papers to the geographic locations of their authors' affiliations. The citation flows as well as the collaboration strengths between cities decrease with the distance between them and follow gravity laws. In addition, the total research impact of a country grows linearly with the amount of national funding for research & development. However, the average impact reveals a peculiar threshold effect: the scientific output of a country may reach an impact larger than the world average only if the country invests more than about 100,000 USD per researcher annually.
Assuntos
Pesquisa Biomédica/estatística & dados numéricos , Comportamento Cooperativo , Cooperação Internacional , Publicações/estatística & dados numéricos , Algoritmos , Pesquisa Biomédica/economia , Apoio Financeiro , Geografia , Modelos Estatísticos , Ciência/estatística & dados numéricosRESUMO
Plasma lipid concentrations cannot properly account for the complex interactions prevailing in lipoprotein (patho)physiology. Sequential ultracentrifugation (UCF) is the gold standard for physical lipoprotein isolations allowing for subsequent analyses of the molecular composition of the particles. Due to labor and cost issues, however, the UCF-based isolations are usually done only for VLDL, LDL, and HDL fractions; sometimes with the addition of intermediate density lipoprotein (IDL) particles and the fractionation of HDL into HDL(2) and HDL(3) (as done here; n = 302). We demonstrate via these data, with the lipoprotein lipid concentration and composition information combined, that the self-organizing map (SOM) analysis reveals a novel data-driven in silico phenotyping of lipoprotein metabolism beyond the experimentally available classifications. The SOM-based findings are biologically consistent with several well-known metabolic characteristics and also explain some apparent contradictions. The novelty is the inherent emergence of complex lipoprotein associations; e.g., the metabolic subgrouping of the associations between plasma LDL cholesterol concentrations and the structural subtypes of LDL particles. Importantly, lipoprotein concentrations cannot pinpoint lipoprotein phenotypes. It would generally be beneficial to computationally enhance the UCF-based lipoprotein data as illustrated here. Particularly, the compositional variations within the lipoprotein particles appear to be a fundamental issue with metabolic and clinical corollaries.
Assuntos
Biologia Computacional/métodos , Lipoproteínas/metabolismo , Fenótipo , Apolipoproteínas B/sangue , Apolipoproteínas B/isolamento & purificação , Apolipoproteínas B/metabolismo , Biologia Computacional/economia , Feminino , Humanos , Lipoproteínas/sangue , Lipoproteínas/isolamento & purificação , Masculino , Metabolômica , Reconhecimento Automatizado de Padrão , UltracentrifugaçãoRESUMO
This review focuses on recent non-invasive or minimally invasive magnetic resonance (MR) approaches to study atherothrombosis. The potential benefits of combining diverse metabolic information obtained by the variety of MR techniques from tissues in vivo and ex vivo and from body fluids in vitro are also briefly discussed. A well established methodology is available for lipoprotein subclass quantification from plasma by 1H MR spectroscopy providing information for assessing the long-term risk of atherosclerosis. Multi-contrast MR imaging in vivo relying on endogenous contrast allows partial characterization of components in atherothrombotic plaques. The use of exogenous contrast agents in MR angiography enhances blood-tissue contrast and provides functional information on plaque metabolism, improving plaque characterization and assessment of plaque vulnerability by MR imaging. Recent applications of molecular targeted MR imaging have revealed novel opportunities for specific early detection of atherothrombotic processes, such as angiogenesis and accumulation of macrophages. Currently, MR imaging and spectroscopy can produce such metabolic in vivo and in vitro information that in combination could facilitate the screening, identification and follow-up of cardiovascularly vulnerable patients in research settings. The recent developments imply that in the near future MR techniques will be part of clinical protocols for individual diagnostics in atherothrombosis.