Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Clin Med ; 13(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673515

RESUMO

The fractional flow reserve (FFR) is well recognized as a gold standard measure for the estimation of functional coronary stenosis. Technological progressions in image processing have empowered the reconstruction of three-dimensional models of the coronary arteries via both non-invasive and invasive imaging modalities. The application of computational fluid dynamics (CFD) techniques to coronary 3D anatomical models allows the virtual evaluation of the hemodynamic significance of a coronary lesion with high diagnostic accuracy. METHODS: Search of the bibliographic database for articles published from 2011 to 2023 using the following search terms: invasive FFR and non-invasive FFR. Pooled analysis of the sensitivity and specificity, with the corresponding confidence intervals from 32% to 94%. In addition, the summary processing times were determined. RESULTS: In total, 24 studies published between 2011 and 2023 were included, with a total of 13,591 patients and 3345 vessels. The diagnostic accuracy of the invasive and non-invasive techniques at the per-patient level was 89% (95% CI, 85-92%) and 76% (95% CI, 61-80%), respectively, while on the per-vessel basis, it was 92% (95% CI, 82-88%) and 81% (95% CI, 75-87%), respectively. CONCLUSION: These opportunities providing hemodynamic information based on anatomy have given rise to a new era of functional angiography and coronary imaging. However, further validations are needed to overcome several scientific and computational challenges before these methods are applied in everyday clinical practice.

2.
Heart Lung Circ ; 28(4): e33-e36, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29895487

RESUMO

AIMS: We aimed to investigate the performance of virtual functional assessment of coronary stenoses using intravascular ultrasound (IVUS)-based three-dimensional (3D) coronary artery reconstruction against the invasively measured fractional flow reserve (FFR). METHODS AND RESULTS: Twenty-two (22) patients with either typical symptoms of stable angina or a positive stress test, who underwent IVUS and FFR, were included in this study. Five (5) patients presented FFR values lower than the 0.80 threshold, indicating ischaemia. IVUS-based 3D reconstruction and blood flow simulation were performed and the virtual functional assessment index (vFAI) was calculated. A strong correlation between IVUS-based vFAI and FFR was observed (Spearman correlation coefficient [rs]=0.88, p<0.0001). There was a small overestimation of the FFR by the IVUS-based vFAI (mean difference=0.0196±0.037; p=0.023 for difference from zero). All cases with haemodynamically significant stenoses (FFR≤0.8) were correctly categorised by the IVUS-based vFAI (vFAI≤0.8). CONCLUSION: The proposed approach allows the complete and comprehensive assessment of coronary stenoses providing anatomic and physiologic information, pre- and post-intervention, using only an IVUS catheter without the use of a pressure wire.


Assuntos
Estenose Coronária/diagnóstico , Vasos Coronários/diagnóstico por imagem , Reserva Fracionada de Fluxo Miocárdico/fisiologia , Imageamento Tridimensional , Ultrassonografia de Intervenção/métodos , Angiografia Coronária , Estenose Coronária/fisiopatologia , Feminino , Humanos , Masculino , Projetos Piloto , Reprodutibilidade dos Testes
3.
Expert Rev Cardiovasc Ther ; 15(11): 863-877, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28902523

RESUMO

INTRODUCTION: Hemodynamic indices derived from measurements with the pressure wire (primarily fractional flow reserve [FFR]) have been established as a reliable tool for assessing coronary stenoses and improving clinical decision making. However, the use of the pressure wire constitutes a hurdle for the universal adoption of physiology-guided patient management. Technological advancements have enabled the large-scale application of blood flow simulation (computational fluid dynamics [CFD]) to medical imaging, thereby enabling the virtual assessment of coronary physiology. Areas covered: This review summarizes the stand-alone non-invasive (coronary computed tomographic imaging) and invasive (coronary angiography) imaging approaches which were initially used for predicting FFR, and focuses on the use of blood flow modeling for functional assessment of coronary lesions in clinical practice. Expert commentary: Validation studies of CFD-derived methodologies for functional assessment have shown that virtual indices correlate well and have good diagnostic accuracy compared to pressure wire-FFR despite inherent limitations of spatial resolution and assumptions regarding boundary conditions in flow modeling. Beyond point-to-point agreement with FFR, further studies are needed to demonstrate the clinical safety/efficacy of these computational tools regarding patient outcomes. Such evidence base could support the incorporation of these methodologies into routine patient management for decision making and reliable risk stratification.


Assuntos
Angiografia Coronária/métodos , Estenose Coronária/fisiopatologia , Tomografia Computadorizada por Raios X/métodos , Reserva Fracionada de Fluxo Miocárdico , Hemodinâmica , Humanos , Modelos Cardiovasculares , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA