Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(53): 113335-113363, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37848789

RESUMO

The Indian Punjab state is drained by the four rivers, along with a well-connected network of canals, and is now dealing with a slew of water quality issues and problems. In this study, basin-wise hydrogeochemical modelling of 323 groundwater samples and identification of NO3- and F- enrichment pathways in aquifer systems of Punjab were studied using different plots and multivariate statistics. To evaluate the groundwater quality and human health risks, an entropy-based water quality index and Monte Carlo simulation were used, respectively. Spatial distribution of NO3- indicated that its very high values were prominent in parts of southwestern Punjab falling under LSRB, along with few pockets in eastern and northeastern Punjab falling under MSRB and GRB. High NO3- values (> 45.0 mg/L) were found in 15.0% of Ravi River Basin (RRB) groundwater samples, 22.86% of Beas River Basin (BRB), 23.52% of Middle Sutlej River Basin (MSRB), 36.9% of Lower Sutlej River Basin (LSRB), and 21.31% of Ghaggar River Basin (GRB). The spatial distribution of NO3- revealed elevated concentrations (> 100 mg/L) in the southwestern part of Punjab, particularly in LSRB and localized pockets in the eastern and northeastern areas of Punjab within MSRB and GRB. High F- concentration (> 1.5 mg/L) was observed in 15.12% and 21.31% groundwater samples of LSRB and GRB, respectively. Spatially southern parts falling under LSRB and GRB reflected high F- content (> 1.5 mg/L) in groundwater. In LSRB, evaporative and anthropogenic processes influence the groundwater quality. The results of interionic relationships and statistical analysis revealed that NO3- has anthropogenic origin and that is being aggravated by leaching, the evaporation processes, animal excreta, septic tanks and irrigation return flows in LSRB and GRB, while F- is geogenic in nature. Hazard index (HI) values in 14.63%, 22.2%, 24.6%, 49.58%, and 34.42% samples for adults and 21.95%, 27.7%, 42.0%, 72.3%, and 52.46% samples for children were higher than unity in RRB, BRB, MSRB, LSRB, and GRB, respectively. The basin-wise demarcation of various groundwater quality parameter and assessment of human health risk would be of significance for the management of water resources.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Criança , Adulto , Humanos , Rios/química , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Nitratos/análise , Água Subterrânea/química , Qualidade da Água , Índia , Medição de Risco
2.
Environ Pollut ; 259: 113711, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31891909

RESUMO

Human interferences have caused groundwater contamination in alluvial aquifers which subsequently affects the health of exposed population. In the present study, 74 groundwater samples from the semi-arid region of Panipat district, falling under Yamuna sub-basin, India was evaluated to know the potential non-carcinogenic human health risk in local adult and child population. The major objective of the present study was to know the non-carcinogenic human health risk due to intake of fluoride and nitrate contaminated water, using two different approaches: deterministic and probabilistic (Monte Carlo simulation). The values of hazard quotient (HQ) determined by deterministic as well as probabilistic approach were nearly identical. The hazard index (HI) value of 40.8% samples was above the unity in case of adults while 69.7% samples indicated HI value greater than unity for children thus indicating children are more prone to non-carcinogenic health risk than the adult population. Sensitivity analysis was performed to identify the influence of the non-carcinogenic human health risk predictor variables for the prediction of risk and concentration factor (CF) was the most influential variable. Multivariate statistical techniques were employed to know the positive and negative relationship of fluoride and nitrate with other parameters. Results of principal component analysis/factor analysis (PCA/FA) indicated that the concentration of fluoride is controlled by the presence of calcium due to their negative correlation in groundwater samples. The hierarchical agglomerative cluster analysis (HCA) also supported the outcome of PCA/FA and both indicated anthropogenic sources of fluoride and nitrate in groundwater.


Assuntos
Fluoretos/análise , Água Subterrânea/química , Nitratos/análise , Medição de Risco/métodos , Poluentes Químicos da Água/análise , Adulto , Criança , Monitoramento Ambiental , Humanos , Índia
3.
Environ Monit Assess ; 191(3): 177, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30793215

RESUMO

Industrialization and globalization have resulted in pollution of all the three ecosystems, including soil, water, and air. Among these, air pollution has generated much interest, since it has a major influence on the transboundary dispersion of pollutants globally. Air pollution tolerance index (APTI) value represents tolerance level of plants which help in selecting the most suitable plant species for plantation in/around affected areas. This parameter in conjunction with Anticipated Performance Index (API) can provide a logical solution for green belt development by considering biological and socio-economic aspect of the species and help in reducing the levels of pollutants. The present study was conducted in Himachal Pradesh, constituting a very vital part of the Indian Himalayan Region. In the present study, APTI and API values of six commonly growing temperate and sub-temperate plant species viz., Quercus leucotrichophora, Rubus ellipticus, Debregeasia saeneb, Hypericum oblongifolium, Punica granatum, and Grevillea robusta, were evaluated along the National Highway-5 in Himachal Pradesh. The highest value of APTI was observed for Grevillea robusta (12.89), followed by Punica granatum (10.87), Debregeasia saeneb (10.50), Hypericum oblongifolium (10.43), Rubus ellipticus (10.18), and Quercus leucotrichophora (9.68). Upon assessment of API, it was observed that Grevillea robusta (62.50%) was the highest scoring plant species in trees, while Rubus ellipticus and Debregeasia saeneb were the highest scoring shrub species (56.25% each) and thus can be recommended for green belt development and attenuation of air pollution in the region. Punica granatum can be suggested for plantation among the native species.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Árvores/crescimento & desenvolvimento , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Biodegradação Ambiental , Índia , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Árvores/química , Madeira/química , Madeira/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA