Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Analyst ; 135(6): 1333-8, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20498883

RESUMO

We describe the application of Extreme Value Statistics to the analysis of discrete species that possess distinguishable properties (fluorescence wavelength, fluorescence intensity, light scattering, etc.) as they cross a well-defined observation/probe region. Time-gated selection and extreme value data analysis result in increased resolution in analytical determinations. When only the data corresponding to the smallest crossing times are selected for analysis, the width of the diffusion band decreases for the measured parameter. The molecules with the smallest crossing times diffuse preferentially along the flow direction. A Monte Carlo technique and the probability density function (pdf) for a freely diffusing species are used to generate data streams to provide a theoretical basis for the aforementioned phenomenon. These calculations are included to characterize the effect of the average flow rate and the diffusion constant. We have also included a procedure for extracting the normal diffusion constant (D) from the Extreme Value Distribution. In contrast to standard flow analysis, which requires long path lengths, our approach is particularly suited for measurements in picolitre and nanolitre volumes and provides another dimension to single-molecule measurements in cellular size volumes. We believe that this is a general phenomenon that depends upon the details of the pdf, which can be complex.


Assuntos
Espectrometria de Fluorescência/métodos , Difusão , Nanopartículas Metálicas/química , Método de Monte Carlo , Prata/química , Fatores de Tempo
2.
Cytometry A ; 60(1): 41-52, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15229856

RESUMO

BACKGROUND: The measurement of physical properties from single molecules has been demonstrated. However, the majority of single-molecule studies report values based on relatively large data sets (e.g., N > 50). While there are studies that report physical quantities based on small sample sets, there has not been a detailed statistical analysis relating sample size to the reliability of derived parameters. METHODS: Monte Carlo simulations and multinomial analysis, dependent on quantifiable experimental parameters, were used to determine the minimum number of single-molecule measurements required to produce an accurate estimate of a population mean. Simulation results were applied to the fluorescence-based sizing of DNA fragments by ultrasensitive flow cytometry (FCM). RESULTS: Our simulations show, for an analytical technique with a 10% CV, that the average of as few as five single-molecule measurements would provide a mean value within one SD of the population mean. Additional simulations determined the number of measurements required to obtain the desired number of replicates for each subpopulation within a mixture. Application of these results to flow cytometry data for lambda/HindIII and S. aureus Mu50/SmaI DNA digests produced accurate DNA fingerprints from as few as 98 single-molecule measurements. CONCLUSIONS: A surprisingly small number of single-molecule measurements are required to obtain a mean measurement descriptive of a normally-distributed parent population.


Assuntos
Bacteriófago lambda/química , Impressões Digitais de DNA/estatística & dados numéricos , Fragmentação do DNA , DNA/análise , Citometria de Fluxo/estatística & dados numéricos , Staphylococcus aureus/química , Impressões Digitais de DNA/métodos , Citometria de Fluxo/métodos , Método de Monte Carlo , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA