RESUMO
The cost of walking and running on uneven terrain is not directly explained by external mechanical work. Although metabolic cost of transport increases linearly with gradient at uphill and downhill gradients exceeding 15%, at shallower gradients, the relationship is nonlinear, with the minimum cost occurring at â¼10% downhill grade. Given these nonlinear relationships between grade and metabolic cost, we projected a significant difference in the total metabolic cost of two walking conditions that required the same total external mechanical work be performed over the same total period of time; in one condition, time was spent walking to gradients that were fixed at +10.5% and -10.5% and in the other condition time was spent walking to gradients that varied from 0 to +21% and from -21 to 0%. We compared these two conditions experimentally, using an approach to quantify nonsteady-state oxidative energy expenditure. In line with our projection, the "variable" grade condition resulted in an 8.3 ± 2.2% higher total cumulative oxidative energy expenditure (J·kg-1) compared with the "fixed" grade condition (P < 0.001). Future work should aim to apply our approach across different gradients, speeds, and forms of locomotion; especially those that might provide insight into how humans optimize locomotion on variable grade routes.NEW & NOTEWORTHY We use a method for quantifying nonsteady-state energetics to show that regardless of whether the same total gain and loss in elevation (i.e., same total external mechanical work) is achieved over the same period of time, the total energy expenditure of different graded walking conditions can vary depending on the grades that are walked at and for how long they are walked at.
Assuntos
Corrida , Caminhada , Humanos , Locomoção , Metabolismo EnergéticoRESUMO
Many models have been developed to predict metabolic energy expenditure based on biomechanical proxies of muscle function. However, current models may only perform well for select forms of locomotion, not only because the models are rarely rigorously tested across subtle and broad changes in locomotor task but also because previous research has not adequately characterised different forms of locomotion to account for the potential variability in muscle function and thus metabolic energy expenditure. To help to address the latter point, the present study imposed frequency and height constraints to hopping and quantified gross metabolic power as well as the activation requirements of medial gastrocnemius (MG), lateral gastrocnemius (GL), soleus (SOL), tibialis anterior (TA), vastus lateralis (VL), rectus femoris (RF) and biceps femoris (BF), and the work requirements of GL, SOL and VL. Gross metabolic power increased with a decrease in hop frequency and increase in hop height. There was no hop frequency or hop height effect on the mean electromyography (EMG) data of ankle musculature; however, the mean EMG of VL and RF increased with a decrease in hop frequency and that of BF increased with an increase in hop height. With a reduction in hop frequency, GL, SOL and VL fascicle shortening, fascicle shortening velocity and fascicle to MTU shortening ratio increased, whereas with an increase in hop height, only SOL fascicle shortening velocity increased. Therefore, within the constraints that we imposed, decreases in hop frequency and increases in hop height resulted in increases in metabolic power that could be explained by increases in the activation requirements of knee musculature and/or increases in the work requirements of both knee and ankle musculature.
Assuntos
Músculo Esquelético , Músculo Quadríceps , Humanos , Músculo Esquelético/fisiologia , Eletromiografia , Músculo Quadríceps/fisiologia , Extremidade Inferior , Locomoção/fisiologia , Fenômenos BiomecânicosRESUMO
PURPOSE: The study's purpose was to determine the effect of foot orthoses on neuromuscular control and the aerobic cost of running. METHODS: Twelve recreational athletes ran for 1 h on a treadmill at a constant velocity (i.e., 10% higher than their first ventilatory threshold) with and without custom-molded foot orthoses, in a counterbalanced order. Surface EMG activity of five lower limb muscles, together with oxygen consumption and HR, was recorded at 8-min intervals, starting after 2 min, during the run. A series of neuromuscular tests including voluntary and electrically evoked contractions of the ankle plantar flexors was performed before and after running. RESULTS: Peroneus longus root mean square amplitude decreased with time, independently of the condition (-18.9%, P < 0.01). Lower root mean square signal amplitude for vastus medialis (-13.3%, P < 0.02) and gastrocnemius medialis (-10.7%, P < 0.05), combined with increased peroneus longus burst duration (+14.7%, P < 0.05), occurred when running with orthoses. There was no main effect of the condition for oxygen consumption (P > 0.05), whereas HR was significantly lowered while wearing foot orthoses (-3%, P < 0.02). Maximal strength capacity (-9%, P < 0.01), normalized EMG activity (-17%, P < 0.001), and peak twitch torque (-14%, P < 0.01) declined from before to after exercise, independently of the condition. Smaller fatigue-induced decrements in the rate of torque development within the first 200 ms (-6% vs -33%, P < 0.01) were reported after running with foot orthoses. CONCLUSIONS: Wearing foot orthoses alters neuromuscular control during a submaximal 1-h treadmill run and partly protects from the resulting fatigue-induced reductions in rapid force development characteristics of the plantar flexors. However, these changes may be too small to alter the aerobic cost of running.