Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Can Assoc Radiol J ; 75(4): 751-760, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38538619

RESUMO

Purpose: Scoliosis is a complex spine deformity with direct functional and cosmetic impacts on the individual. The reference standard for assessing scoliosis severity is the Cobb angle which is measured on radiographs by human specialists, carrying interobserver variability and inaccuracy of measurements. These limitations may result in lack of timely referral for management at a time the scoliotic deformity progression can be saved from surgery. We aimed to create a machine learning (ML) model for automatic calculation of Cobb angles on 3-foot standing spine radiographs of children and adolescents with clinical suspicion of scoliosis across 2 clinical scenarios (idiopathic, group 1 and congenital scoliosis, group 2). Methods: We retrospectively measured Cobb angles of 130 patients who had a 3-foot spine radiograph for scoliosis within a 10-year period for either idiopathic or congenital anomaly scoliosis. Cobb angles were measured both manually by radiologists and by an ML pipeline (segmentation-based approach-Augmented U-Net model with non-square kernels). Results: Our Augmented U-Net architecture achieved a Symmetric Mean Absolute Percentage Error (SMAPE) of 11.82% amongst a combined idiopathic and congenital scoliosis cohort. When stratifying for idiopathic and congenital scoliosis individually a SMAPE of 13.02% and 11.90% were achieved, respectively. Conclusion: The ML model used in this study is promising at providing automated Cobb angle measurement in both idiopathic scoliosis and congenital scoliosis. Nevertheless, larger studies are needed in the future to confirm the results of this study prior to translation of this ML algorithm into clinical practice.


Assuntos
Aprendizado de Máquina , Escoliose , Humanos , Escoliose/diagnóstico por imagem , Escoliose/congênito , Adolescente , Estudos Retrospectivos , Feminino , Masculino , Criança , Coluna Vertebral/diagnóstico por imagem , Coluna Vertebral/anormalidades , Radiografia/métodos
2.
Eur Radiol ; 30(12): 6867-6876, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32591889

RESUMO

OBJECTIVES: To benchmark the performance of a calibrated 3D convolutional neural network (CNN) applied to multiparametric MRI (mpMRI) for risk assessment of clinically significant prostate cancer (csPCa) using decision curve analysis (DCA). METHODS: We retrospectively analyzed 499 patients who had positive mpMRI (PI-RADSv2 ≥ 3) and MRI-targeted biopsy. The training cohort comprised 449 men, including a calibration set of 50 men. Biopsy decision strategies included using risk estimates from the CNN (original and calibrated), to perform biopsy in men with PI-RADSv2 ≥ 4 only, or additionally in men with PI-RADSv2 3 and PSA density (PSAd) ≥ 0.15 ng/ml/ml. Discrimination, calibration and clinical usefulness in the unseen test cohort (n = 50) were assessed using C-statistic, calibration plots and DCA, respectively. RESULTS: The calibrated CNN achieved moderate calibration (Hosmer-Lemeshow calibration test, p = 0.41) and good discrimination (C = 0.85). DCA revealed consistently higher net benefit and net reduction in biopsies for the calibrated CNN compared with the original CNN, PI-RADSv2 ≥ 4 and the combined strategy of PI-RADSv2 and PSAd. Original CNN predictions were severely miscalibrated (p < 0.0001) resulting in net harm compared with a 'biopsy all' patients strategy. At-risk thresholds ≥ 10% using the calibrated CNN and the combined strategy reduced the number of biopsies by an estimated 201 and 55 men, respectively, per 1000 men at risk, without missing csPCa, while original CNN and PI-RADSv2 ≥ 4 could not achieve a net reduction in biopsies. CONCLUSIONS: DCA revealed that our calibrated 3D-CNN resulted in fewer unnecessary biopsies compared with using PI-RADSv2 alone or in combination with PSAd. CNN calibration is important in achieving clinical utility. KEY POINTS: • A 3D deep learning model applied to multiparametric MRI may help to prevent unnecessary prostate biopsies in patients eligible for MRI-targeted biopsy. • Owing to miscalibration, original risk estimates by the deep learning model require prior calibration to enable clinical utility. • Decision curve analysis confirmed a net benefit of using our calibrated deep learning model for biopsy decisions compared with alternative strategies, including PI-RADSv2 alone and in combination with prostate-specific antigen density.


Assuntos
Biópsia/métodos , Aprendizado Profundo , Imageamento por Ressonância Magnética , Neoplasias da Próstata/diagnóstico por imagem , Medição de Risco/métodos , Algoritmos , Benchmarking , Calibragem , Humanos , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Masculino , Distribuição Normal , Variações Dependentes do Observador , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/patologia , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA