RESUMO
Wastewater irrigation for vegetable cultivation is greatly concerned about the presence of toxic metals in irrigated soil and vegetables which causes possible threats to human health. This study aimed to ascertain the accumulation of heavy metals (HMs) in edible parts of vegetables irrigated with different stages of textile dyeing wastewater (TDW). Bio-concentration factor (BCF), Estimated daily intake (EDI), and target hazard quotient (THQ) were computed to estimate human health risks and speculate the hazard index (HI) of adults and children with the consumption of HMs contaminated vegetables at recommended doses. Five vegetables (red amaranth, Indian spinach, cauliflower, tomato, and radish) in a pot experiment were irrigated with groundwater (T1) and seven stages of TDW (T2â¼T8) following a randomized complete block design (RCBD) with three replications. Among the TDW stages, T8, T7, T4, and T5 exhibited elevated BCF, EDI, THQ, and HI due to a rising trend in the accumulation of Pb, Cd, Cr, and Ni heavy metals in the edible portion of the red amaranth, followed by radish, Indian spinach, cauliflower, and tomato. The general patterns of heavy metal (HM) accumulation, regarded as vital nutrients for plants, were detected in the following sequence: Zn > Mn/Cu > Fe. Conversely, toxic metals were found to be Cd/Cr > Ni > Pb, regardless of the type of vegetables. Principal Component Analysis (PCA) identified T8, T7, and T4 of TDW as the primary contributors to the accumulation of heavy metals in the vegetables examined. Furthermore, the analysis of the heavy metals revealed that the BCF, THQ, and HI values for all studied metals were below 1, except for Pb. This suggests that the present consumption rates of different leafy and non-leafy vegetables, whether consumed individually or together, provide a low risk in terms of heavy metal exposure. Nevertheless, the consumption of T8, T7, and T4 irrigated vegetables, specifically Indian spinach alone or in combination with red amaranth and radish, by both adults and children, at the recommended rate, was found to pose potential health risks. On the other hand, T2, T3, and T6 irrigated vegetables were deemed safe for consumption. These findings indicated that the practice of irrigating the vegetables with T8, T7, and T4 stages of TDW has resulted in a significant buildup of heavy metals in the soils and edible parts of vegetables which are posing health risks to adults and children. Hence, it is imperative to discharge the T8, T7, and T4 stages of TDW after ETP to prevent the contamination of vegetables and mitigate potential health risks.
Assuntos
Metais Pesados , Poluentes do Solo , Solanum lycopersicum , Adulto , Criança , Humanos , Cádmio , Monitoramento Ambiental , Contaminação de Alimentos/análise , Chumbo , Metais Pesados/análise , Medição de Risco , Solo , Poluentes do Solo/análise , Verduras , Águas ResiduáriasRESUMO
This study investigates the effective removal of cesium (Cs) from aqueous solution using sewage sludge molten (SSM) slag that has undergone the surface modification with alkali (NaOH) hydrothermal treatment. The raw and modified slags were characterised systematically using the BET method, the FESEM, the XRF, the XRD spectroscopy and the CEC analysis to understand the physicochemical changes of the materials, and its sensitivity to Cs ions adsorption. Batch adsorption experiments were carried out to investigate the effects of adsorbent dose, contact time, solution pH, different initial Cs concentrations, temperature and the effect of competitive ions on Cs adsorption. The adsorption isotherm, kinetic and thermodynamic studies were also evaluated based on the experimental results. A higher Cs removal efficiency of almost 100% (for 20-100â¯mg/L of initial concentration) was achieved by the modified SSM slag, and the maximum adsorption capacity was found to be 52.36â¯mg/g. Several types of synthetic zeolites such as zeolite X, zeolite Y, zeolite A, and sodalite were formed on surface of the modified slag through the modification process which might be enhanced the Cs adsorption capacity. Kinetic parameters were fitted by the pseudo-second order model. The adsorption isotherms data of modified slag were well-fitted to the Langmuir (R2â¯=â¯0.989) and Freundlich isotherms (R2â¯=â¯0.988). The thermodynamic studies indicated that the adsorption process by the modified slag was spontaneous and exothermic. In the competitive ions effect, the modified slag effectively captured the Cs ion in the presence of Na+ and K+, especially at their lower concentrations. Moreover, the modified slag was reused for several cycles after the successful elution process with an appropriate eluting agent (0.5â¯Mâ¯H2SO4), without deterioration of its original performance. Therefore, the SSM modified slag could be effectively used as a low-cost potential adsorbent for high Cs adsorption from wastewater.