Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BioData Min ; 14(1): 48, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819128

RESUMO

OBJECTIVES: To develop and to propose a machine learning model for predicting glaucoma and identifying its risk factors. METHOD: Data analysis pipeline is designed for this study based on Cross-Industry Standard Process for Data Mining (CRISP-DM) methodology. The main steps of the pipeline include data sampling, preprocessing, classification and evaluation and validation. Data sampling for providing the training dataset was performed with balanced sampling based on over-sampling and under-sampling methods. Data preprocessing steps were missing value imputation and normalization. For classification step, several machine learning models were designed for predicting glaucoma including Decision Trees (DTs), K-Nearest Neighbors (K-NN), Support Vector Machines (SVM), Random Forests (RFs), Extra Trees (ETs) and Bagging Ensemble methods. Moreover, in the classification step, a novel stacking ensemble model is designed and proposed using the superior classifiers. RESULTS: The data were from Shahroud Eye Cohort Study including demographic and ophthalmology data for 5190 participants aged 40-64 living in Shahroud, northeast Iran. The main variables considered in this dataset were 67 demographics, ophthalmologic, optometric, perimetry, and biometry features for 4561 people, including 4474 non-glaucoma participants and 87 glaucoma patients. Experimental results show that DTs and RFs trained based on under-sampling of the training dataset have superior performance for predicting glaucoma than the compared single classifiers and bagging ensemble methods with the average accuracy of 87.61 and 88.87, the sensitivity of 73.80 and 72.35, specificity of 87.88 and 89.10 and area under the curve (AUC) of 91.04 and 94.53, respectively. The proposed stacking ensemble has an average accuracy of 83.56, a sensitivity of 82.21, a specificity of 81.32, and an AUC of 88.54. CONCLUSIONS: In this study, a machine learning model is proposed and developed to predict glaucoma disease among persons aged 40-64. Top predictors in this study considered features for discriminating and predicting non-glaucoma persons from glaucoma patients include the number of the visual field detect on perimetry, vertical cup to disk ratio, white to white diameter, systolic blood pressure, pupil barycenter on Y coordinate, age, and axial length.

2.
BMC Med Inform Decis Mak ; 19(1): 182, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31492132

RESUMO

BACKGROUND: Kidney allocation is a multi-criteria and complex decision-making problem, which should also consider ethical issues in addition to the medical aspects. Leading countries in this field use a point scoring system to allocate kidneys. Hence, the purpose of this study is to identify and weight the kidney allocation criteria considering the balance between utility and equity. METHODS: To do this, a new fuzzy hybrid approach is proposed, which consists of two steps: In the first step, Fuzzy Delphi Method (FDM) is used to identify the effective criteria in the kidney allocation algorithm. In the second step, Intuitionistic Fuzzy Analytic Hierarchy Process (IF-AHP) is employed to determine the weight of the criteria. RESULTS: The results showed that the highest weight belongs to "Medical emergency" criterion and the lowest weight to "5 HLA mismatches", which is similar to Euro-transplant kidney allocation system (ETKAS). The developed method is evaluated in two steps. First, the proposed model is implemented using a real case study from the Iranian Kidney Allocation System. It was shown that the proposed model has the potential to improve allocation outcome. Second, the proposed model's superiority to the current model is approved by the experts using the results display in the profile matrix. Finally, sensitivity analysis is performed to check the robustness of the proposed model. CONCLUSIONS: This paper contributes to the kidney allocation literature by doing the following: (a) developing a comprehensive framework for identification and weightings of criteria for kidney allocation, (b) using, for the first time, the IF-AHP technique to consider hesitancy of decision makers and uncertainty in organ allocation, and (c) proposing an appropriate framework for the countries that intend to improve or modify their organ allocation system.


Assuntos
Lógica Fuzzy , Transplante de Rim , Seleção de Pacientes , Alocação de Recursos , Obtenção de Tecidos e Órgãos/organização & administração , Algoritmos , Tomada de Decisões , Humanos , Irã (Geográfico) , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA