Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Curr Protoc Toxicol ; 72: 14.17.1-14.17.23, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28463419

RESUMO

Drug clearance rates from the body can determine drug exposure that can affect efficacy or toxicity. Thus, accurate prediction of drug clearance during preclinical development can help guide dose selection in humans, but animal testing is not always predictive of human outcomes. Because hepatic drug metabolism is a rate-limiting step in the overall clearance of many drugs, primary human hepatocytes (PHHs) in suspension cultures or monolayers are used for drug clearance predictions. Yet, the precipitous decline in drug metabolism capacity can lead to significant underestimation of clearance rates, particularly for low turnover compounds that have desirable one-pill-a-day dosing regimens. In contrast, micropatterned co-cultures (MPCCs) of PHHs and fibroblasts display phenotypic stability for several weeks and can help mitigate the limitations of conventional cultures. Here, we describe protocols to create and use MPCCs for drug clearance predictions, and for modeling clinically-relevant drug-drug interactions that can affect drug clearance. © 2017 by John Wiley & Sons, Inc.


Assuntos
Técnicas de Cocultura/métodos , Interações Medicamentosas , Hepatócitos/metabolismo , Preparações Farmacêuticas/metabolismo , Células Estromais/metabolismo , Células 3T3 , Animais , Técnicas de Cultura de Células , Meios de Cultura , Fibroblastos/metabolismo , Hepatócitos/ultraestrutura , Humanos , Taxa de Depuração Metabólica , Camundongos , Fenótipo , Células Estromais/ultraestrutura
2.
Drug Metab Dispos ; 43(5): 774-85, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25739975

RESUMO

Elevated levels of proinflammatory cytokines associated with infection and inflammation can modulate cytochrome P450 enzymes, leading to potential disease-drug interactions and altered small-molecule drug disposition. We established a human-derived hepatocyte-Kupffer cell (Hep:KC) coculture model to assess the indirect cytokine impact on hepatocytes through stimulation of KC-mediated cytokine release and compared this model with hepatocytes alone. Characterization of Hep:KC cocultures showed an inflammation response after treatment with lipopolysaccharide and interleukin (IL)-6 (indicated by secretion of various cytokines). Additionally, IL-6 exposure upregulated acute-phase proteins (C-reactive protein, alpha-1-acid glycoprotein, and serum amyloid A2) and downregulated CYP3A4. Compared with hepatocytes alone, Hep:KC cocultures showed enhanced IL-1ß-mediated effects but less impact from both IL-2 and IL-23. Hep:KC cocultures treated with IL-1ß exhibited a higher release of proinflammatory cytokines, an increased upregulation of acute-phase proteins, and a larger extent of metabolic enzyme and transporter suppression. IC50 values for IL-1ß-mediated CYP3A4 suppression were lower in Hep:KC cocultures (98.0-144 pg/ml) compared with hepatocytes alone (IC50 > 5000 pg/ml). Cytochrome suppression was preventable by blocking IL-1ß interaction with IL-1R1 using an antagonist cytokine or an anti-IL-1ß antibody. Unlike IL-1ß, IL-6-mediated effects were comparable between hepatocyte monocultures and Hep:KC cocultures. IL-2 and IL-23 caused a negligible inflammation response and a minimal inhibition of CYP3A4. In both hepatocyte monocultures and Hep:KC cocultures, IL-2RB and IL-23R were undetectable, whereas IL-6R and IL-1R1 levels were higher in Hep:KC cocultures. In summary, compared with hepatocyte monocultures, the Hep:KC coculture system is a more robust in vitro model for studying the impact of proinflammatory cytokines on metabolic enzymes.


Assuntos
Proteínas de Transporte/metabolismo , Hepatócitos/metabolismo , Inflamação/metabolismo , Interleucinas/metabolismo , Células de Kupffer/metabolismo , Células 3T3 , Adulto , Animais , Transporte Biológico/fisiologia , Proteína C-Reativa/metabolismo , Linhagem Celular , Técnicas de Cocultura/métodos , Citocromo P-450 CYP3A/metabolismo , Regulação para Baixo/fisiologia , Glicoproteínas/metabolismo , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Proteína Amiloide A Sérica/metabolismo , Regulação para Cima/fisiologia
3.
Drug Metab Dispos ; 38(10): 1900-5, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20595376

RESUMO

Metabolism is one of the important determinants of the overall disposition of drugs, and the profile of metabolites can have an impact on efficacy and safety. Predicting which drug metabolites will be quantitatively predominant in humans has become increasingly important in the research and development of new drugs. In this study, a novel micropatterned hepatocyte coculture system was evaluated for its ability to generate human in vivo metabolites. Twenty-seven compounds of diverse chemical structure and subject to a range of drug biotransformation reactions were assessed for metabolite profiles in the micropatterned coculture system using pooled cryopreserved human hepatocytes. The ability of this system to generate metabolites that are >10% of dose in excreta or >10% of total drug-related material in circulation was assessed and compared to previously reported data obtained in human hepatocyte suspensions, liver S-9 fraction, and liver microsomes. The micropatterned coculture system was incubated for up to 7 days without a change in medium, which offered an ability to generate metabolites for slowly metabolized compounds. The micropatterned coculture system generated 82% of the excretory metabolites that exceed 10% of dose and 75% of the circulating metabolites that exceed 10% of total circulating drug-related material, exceeds the performance of hepatocyte suspension incubations and other in vitro systems. Phase 1 and phase 2 metabolites were generated, as well as metabolites that arise via two or more sequential reactions. These results suggest that this in vitro system offers the highest performance among in vitro metabolism systems to predict major human in vivo metabolites.


Assuntos
Técnicas de Cocultura/métodos , Hepatócitos/metabolismo , Modelos Biológicos , Preparações Farmacêuticas/metabolismo , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Criopreservação , Humanos , Desintoxicação Metabólica Fase I , Desintoxicação Metabólica Fase II , Estrutura Molecular , Preparações Farmacêuticas/química , Valor Preditivo dos Testes , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA