Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Comput Methods Programs Biomed ; 247: 108079, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394789

RESUMO

BACKGROUND AND OBJECTIVE: This study proposes an unsupervised sequence-to-sequence learning approach that automatically assesses the motion-induced reliability degradation of the cardiac volume signal (CVS) in multi-channel electrical impedance-based hemodynamic monitoring. The proposed method attempts to tackle shortcomings in existing learning-based assessment approaches, such as the requirement of manual annotation for motion influence and the lack of explicit mechanisms for realizing motion-induced abnormalities under contextual variations in CVS over time. METHOD: By utilizing long-short term memory and variational auto-encoder structures, an encoder-decoder model is trained not only to self-reproduce an input sequence of the CVS but also to extrapolate the future in a parallel fashion. By doing so, the model can capture contextual knowledge lying in a temporal CVS sequence while being regularized to explore a general relationship over the entire time-series. A motion-influenced CVS of low-quality is detected, based on the residual between the input sequence and its neural representation with a cut-off value determined from the two-sigma rule of thumb over the training set. RESULT: Our experimental observations validated two claims: (i) in the learning environment of label-absence, assessment performance is achievable at a competitive level to the supervised setting, and (ii) the contextual information across a time series of CVS is advantageous for effectively realizing motion-induced unrealistic distortions in signal amplitude and morphology. We also investigated the capability as a pseudo-labeling tool to minimize human-craft annotation by preemptively providing strong candidates for motion-induced anomalies. Empirical evidence has shown that machine-guided annotation can reduce inevitable human-errors during manual assessment while minimizing cumbersome and time-consuming processes. CONCLUSION: The proposed method has a particular significance in the industrial field, where it is unavoidable to gather and utilize a large amount of CVS data to achieve high accuracy and robustness in real-world applications.


Assuntos
Monitorização Hemodinâmica , Humanos , Impedância Elétrica , Reprodutibilidade dos Testes , Aprendizagem , Movimento (Física)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA