Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
3.
Trends Biotechnol ; 22(9): 440-5, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15331223

RESUMO

The automation of laboratory techniques has greatly increased the number of experiments that can be carried out in the chemical and biological sciences. Until recently, this automation has focused primarily on improving hardware. Here we argue that future advances will concentrate on intelligent software to integrate physical experimentation and results analysis with hypothesis formulation and experiment planning. To illustrate our thesis, we describe the 'Robot Scientist' - the first physically implemented example of such a closed loop system. In the Robot Scientist, experimentation is performed by a laboratory robot, hypotheses concerning the results are generated by machine learning and experiments are allocated and selected by a combination of techniques derived from artificial intelligence research. The performance of the Robot Scientist has been evaluated by a rediscovery task based on yeast functional genomics. The Robot Scientist is proof that the integration of programmable laboratory hardware and intelligent software can be used to develop increasingly automated laboratories.


Assuntos
Inteligência Artificial , Automação/métodos , Software , Algoritmos , Aminoácidos Aromáticos/biossíntese , Automação/instrumentação , Economia , Sistemas de Informação Administrativa , Modelos Biológicos , Pesquisa/economia , Pesquisa/instrumentação , Projetos de Pesquisa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Estatística como Assunto , Integração de Sistemas
4.
Nature ; 427(6971): 247-52, 2004 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-14724639

RESUMO

The question of whether it is possible to automate the scientific process is of both great theoretical interest and increasing practical importance because, in many scientific areas, data are being generated much faster than they can be effectively analysed. We describe a physically implemented robotic system that applies techniques from artificial intelligence to carry out cycles of scientific experimentation. The system automatically originates hypotheses to explain observations, devises experiments to test these hypotheses, physically runs the experiments using a laboratory robot, interprets the results to falsify hypotheses inconsistent with the data, and then repeats the cycle. Here we apply the system to the determination of gene function using deletion mutants of yeast (Saccharomyces cerevisiae) and auxotrophic growth experiments. We built and tested a detailed logical model (involving genes, proteins and metabolites) of the aromatic amino acid synthesis pathway. In biological experiments that automatically reconstruct parts of this model, we show that an intelligent experiment selection strategy is competitive with human performance and significantly outperforms, with a cost decrease of 3-fold and 100-fold (respectively), both cheapest and random-experiment selection.


Assuntos
Genômica/instrumentação , Genômica/métodos , Modelos Biológicos , Projetos de Pesquisa , Pesquisadores/estatística & dados numéricos , Pesquisa/instrumentação , Robótica/métodos , Algoritmos , Aminoácidos/biossíntese , Biologia Computacional , Simulação por Computador , Análise Custo-Benefício , Eficiência , Deleção de Genes , Genes Fúngicos/genética , Humanos , Aprendizagem , Fases de Leitura Aberta , Fenótipo , Probabilidade , Pesquisadores/normas , Robótica/instrumentação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Software , Fatores de Tempo , Recursos Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA