Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(1): 280-290, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38153403

RESUMO

While human mobility plays a crucial role in determining ambient air pollution exposures and health risks, research to date has assessed risks on the basis of almost solely residential location. Here, we leveraged a database of ∼128-144 million workers in the United States and published ambient PM2.5 data between 2011 and 2018 to explore how incorporating information on both workplace and residential location changes our understanding of disparities in air pollution exposure. In general, we observed higher workplace exposures relative to home exposures, as well as increased exposures for nonwhite and less educated workers relative to the national average. Workplace exposure disparities were higher among racial and ethnic groups and job types than by income, education, age, and sex. Not considering workplace exposures can lead to systematic underestimations in disparities in exposure among these subpopulations. We also quantified the error in assigning workers home instead of a weighted home-and-work exposure. We observed that biases in associations between PM2.5 and health impacts by using home instead of home-and-work exposure were the highest among urban, younger populations.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Estados Unidos , Poluentes Atmosféricos/análise , Exposição Ambiental/análise , Poluição do Ar/análise , Bases de Dados Factuais , Material Particulado/análise
2.
Sci Rep ; 13(1): 16690, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794063

RESUMO

Due to the lack of timely data on socioeconomic factors (SES), little research has evaluated if socially disadvantaged populations are disproportionately exposed to higher PM2.5 concentrations in India. We fill this gap by creating a rich dataset of SES parameters for 28,081 clusters (villages in rural India and census-blocks in urban India) from the National Family and Health Survey (NFHS-4) using a precision-weighted methodology that accounts for survey-design. We then evaluated associations between total, anthropogenic and source-specific PM2.5 exposures and SES variables using fully-adjusted multilevel models. We observed that SES factors such as caste, religion, poverty, education, and access to various household amenities are important risk factors for PM2.5 exposures. For example, we noted that a unit standard deviation increase in the cluster-prevalence of Scheduled Caste and Other Backward Class households was significantly associated with an increase in total-PM2.5 levels corresponding to 0.127 µg/m3 (95% CI 0.062 µg/m3, 0.192 µg/m3) and 0.199 µg/m3 (95% CI 0.116 µg/m3, 0.283 µg/m3, respectively. We noted substantial differences when evaluating such associations in urban/rural locations, and when considering source-specific PM2.5 exposures, pointing to the need for the conceptualization of a nuanced EJ framework for India that can account for these empirical differences. We also evaluated emerging axes of inequality in India, by reporting associations between recent changes in PM2.5 levels and different SES parameters.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Material Particulado/efeitos adversos , Exposição Ambiental/efeitos adversos , Justiça Ambiental , Poluição do Ar/análise , Índia , Poluentes Atmosféricos/análise
3.
Environ Res ; 235: 116716, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37481056

RESUMO

Social solidarity is essential to large-scale collective action, but the need for solidarity has received little attention from scholars of Earth Systems, sustainability and public health. Now, the need for solidarity requires recognition. We have entered a new planetary epoch - the Anthropocene - in which human-induced global changes are occurring at an unprecedented scale. There are multiple health crises facing humanity - widening inequity, climate change, biodiversity loss, diminishing resources, persistent poverty, armed conflict, large-scale migration, and others. These global challenges are so far-reaching, and call for such extensive, large-scale action, that solidarity is a sine qua non for tackling these challenges. However, the heightened need for solidarity has received little attention in the context of the Anthropocene and, in particular, how it can be created and nurtured has been overlooked. In this commentary, we explore the concept of solidarity from inter-species, intra-generational and inter-generational perspectives. We also propose strategies to enhance solidarity in the Anthropocene.


Assuntos
Biodiversidade , Planeta Terra , Humanos , Mudança Climática , Pobreza , Saúde Pública
5.
Environ Sci Atmos ; 3: 521-536, 2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-37234229

RESUMO

Low-cost sensors (LCS) are increasingly being used to measure fine particulate matter (PM2.5) concentrations in cities around the world. One of the most commonly deployed LCS is the PurpleAir with ~ 15,000 sensors deployed in the United States, alone. PurpleAir measurements are widely used by the public to evaluate PM2.5 levels in their neighborhoods. PurpleAir measurements are also increasingly being integrated into models by researchers to develop large-scale estimates of PM2.5. However, the change in sensor performance over time has not been well studied. It is important to understand the lifespan of these sensors to determine when they should be serviced or replaced, and when measurements from these devices should or should not be used for various applications. This paper fills this gap by leveraging the fact that: (1) Each PurpleAir sensor is comprised of two identical sensors and the divergence between their measurements can be observed, and (2) There are numerous PurpleAir sensors within 50 meters of regulatory monitors allowing for the comparison of measurements between these instruments. We propose empirically derived degradation outcomes for the PurpleAir sensors and evaluate how these outcomes change over time. On average, we find that the number of 'flagged' measurements, where the two sensors within each PurpleAir sensor disagree, increases with time to ~ 4% after 4 years of operation. Approximately 2 percent of all PurpleAir sensors were permanently degraded. The largest fraction of permanently degraded PurpleAir sensors appeared to be in the hot and humid climate zone, suggesting that sensors in these locations may need to be replaced more frequently. We also find that the bias of PurpleAir sensors, or the difference between corrected PM2.5 levels and the corresponding reference measurements, changed over time by -0.12 µg/m3(95% CI: -0.13 µg/m3, -0.10 µg/m3) per year. The average bias increases dramatically after 3.5 years. Further, climate zone is a significant modifier of the association between degradation outcomes and time.

7.
BMC Public Health ; 22(1): 2314, 2022 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-36496371

RESUMO

The growing frequency, intensity, and duration of extreme heat events necessitates interventions to reduce heat exposures. Local opportunities for heat adaptation may be optimally identified through collection of both quantitative exposure metrics and qualitative data on perceptions of heat. In this study, we used mixed methods to characterize heat exposure among urban residents in the area of Boston, Massachusetts, US, in summer 2020. Repeated interviews of N = 24 study participants ascertained heat vulnerability and adaptation strategies. Participants also used low-cost sensors to collect temperature, location, sleep, and physical activity data. We saw significant differences across temperature metrics: median personal temperature exposures were 3.9 °C higher than median ambient weather station temperatures. Existing air conditioning (AC) units did not adequately control indoor temperatures to desired thermostat levels: even with AC use, indoor maximum temperatures increased by 0.24 °C per °C of maximum outdoor temperature. Sleep duration was not associated with indoor or outdoor temperature. On warmer days, we observed a range of changes in time-at-home, expected given our small study size. Interview results further indicated opportunities for heat adaptation interventions including AC upgrades, hydration education campaigns, and amelioration of energy costs during high heat periods. Our mixed methods design informs heat adaptation interventions tailored to the challenges faced by residents in the study area. The strength of our community-academic partnership was a large part of the success of the mixed methods approach.


Assuntos
Temperatura Alta , Termotolerância , Humanos , Ar Condicionado , Sono , Exercício Físico
8.
Environ Health Perspect ; 130(8): 87007, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35983960

RESUMO

BACKGROUND: This paper represents, to our knowledge, the first national-level (United States) estimate of the economic impacts of vibriosis cases as exacerbated by climate change. Vibriosis is an illness contracted through food- and waterborne exposures to various Vibrio species (e.g., nonV. cholerae O1 and O139 serotypes) found in estuarine and marine environments, including within aquatic life, such as shellfish and finfish. OBJECTIVES: The objective of this study was to project climate-induced changes in vibriosis and associated economic impacts in the United States related to changes in sea surface temperatures (SSTs). METHODS: For our analysis to identify climate links to vibriosis incidence, we constructed three logistic regression models by Vibrio species, using vibriosis data sourced from the Cholera and Other Vibrio Illness Surveillance system and historical SSTs. We relied on previous estimates of the cost-per-case of vibriosis to estimate future total annual medical costs, lost income from productivity loss, and mortality-related indirect costs throughout the United States. We separately reported results for V. parahaemolyticus, V. vulnificus, V. alginolyticus, and "V. spp.," given the different associated health burden of each. RESULTS: By 2090, increases in SST are estimated to result in a 51% increase in cases annually relative to the baseline era (centered on 1995) under Representative Concentration Pathway (RCP) 4.5, and a 108% increase under RCP8.5. The cost of these illnesses is projected to reach $5.2 billion annually under RCP4.5, and $7.3 billion annually under RCP8.5, relative to $2.2 billion in the baseline (2018 U.S. dollars), equivalent to 140% and 234% increases respectively. DISCUSSION: Vibriosis incidence is likely to increase in the United States under moderate and unmitigated climate change scenarios through increases in SST, resulting in a substantial burden of morbidity and mortality, and costing billions of dollars. These costs are mostly attributable to deaths, primarily from exposure to V. vulnificus. Evidence suggests that other factors, including sea surface salinity, may contribute to further increases in vibriosis cases in some regions of the United States and should also be investigated. https://doi.org/10.1289/EHP9999a.


Assuntos
Mudança Climática , Vibrioses , Humanos , Incidência , Alimentos Marinhos , Temperatura , Estados Unidos/epidemiologia , Vibrioses/epidemiologia
9.
Nat Commun ; 13(1): 3847, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794093

RESUMO

Heat-induced labor loss is a major economic cost related to climate change. Here, we use hourly heat stress data modeled with a regional climate model to investigate the heat-induced labor loss in 231 Chinese cities. Results indicate that future urban heat stress is projected to cause an increase in labor losses exceeding 0.20% of the total account gross domestic product (GDP) per year by the 2050s relative to the 2010s. In this process, certain lower-paid sectors could be disproportionately impacted. The implementation of various urban adaptation strategies could offset 10% of the additional economic loss per year and help reduce the inequality-related impact on lower-paid sectors. So future urban warming can not only damage cities as a whole but can also contribute to income inequality. The implication of adaptation strategies should be considered in regard to not only cooling requirements but also environmental justice.


Assuntos
Aclimatação , Regulação da Temperatura Corporal , Mudança Climática , Modelos Climáticos , Temperatura Baixa , Feminino , Humanos , Gravidez
10.
Air Qual Atmos Health ; 15: 311-319, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35173822

RESUMO

Exposure to fine particulate matter (PM2.5) is associated with asthma development as well as asthma exacerbation in children. PM2.5 can be directly emitted or can form in the atmosphere from pollutant precursors. PM2.5 emitted and formed in the atmosphere is influenced by meteorology; future changes in climate may alter the concentration and distribution of PM2.5. Our aim is to estimate the future burden of climate change and PM2.5 on new and exacerbated cases of childhood asthma. Projected concentrations of PM2.5 are based on the Geophysical Fluid Dynamics Laboratory Coupled Model version 3 climate model, the Representative Concentration Pathway 8.5 greenhouse gas scenario, and two air pollution emissions datasets: a 2011 emissions dataset and a 2040 emissions dataset that reflects substantial reductions in emissions of PM2.5 as compared to the 2011 inventory. We estimate additional PM2.5-attributable asthma as well as PM2.5-attributable albuterol inhaler use for four future years (2030, 2050, 2075, and 2095) relative to the year 2000. Exacerbations, regardless of the trigger, are counted as attributable to PM2.5 if the incident disease is attributable to PM2.5. We project 38 thousand (95% CI 36, 39 thousand) additional PM2.5-attributable incident childhood asthma cases and 29 million (95% CI 27, 31 million) additional PM2.5-attributable albuterol inhaler uses per year in 2030, increasing to 200 thousand (95% CI 190, 210 thousand) additional incident cases and 160 million (95% CI 150, 160 million) inhaler uses per year by 2095 relative to 2000 under the 2011 emissions dataset. These additional PM2.5-attributable incident asthma cases and albuterol inhaler use would cost billions of additional U.S. dollars per year by the late century. These outcomes could be mitigated by reducing air pollution emissions.

11.
Geohealth ; 5(11): e2021GH000431, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34765851

RESUMO

Air pollution levels are uneven within cities, contributing to persistent health disparities between neighborhoods and population sub-groups. Highly spatially resolved information on pollution levels and disease rates is necessary to characterize inequities in air pollution exposure and related health risks. We leverage recent advances in deriving surface pollution levels from satellite remote sensing and granular data in disease rates for one city, Washington, DC, to assess intra-urban heterogeneity in fine particulate matter (PM2.5)- attributable mortality and morbidity. We estimate PM2.5-attributable cases of all-cause mortality, chronic obstructive pulmonary disease, ischemic heart disease, lung cancer, stroke, and asthma emergency department (ED) visits using epidemiologically derived health impact functions. Data inputs include satellite-derived annual mean surface PM2.5 concentrations; age-resolved population estimates; and statistical neighborhood-, zip code- and ward-scale disease counts. We find that PM2.5 concentrations and associated health burdens have decreased in DC between 2000 and 2018, from approximately 240 to 120 cause-specific deaths and from 40 to 30 asthma ED visits per year (between 2014 and 2018). However, remaining PM2.5-attributable health risks are unevenly and inequitably distributed across the District. Higher PM2.5-attributable disease burdens were found in neighborhoods with larger proportions of people of color, lower household income, and lower educational attainment. Our study adds to the growing body of literature documenting the inequity in air pollution exposure levels and pollution health risks between population sub-groups, and highlights the need for both high-resolution disease rates and concentration estimates for understanding intra-urban disparities in air pollution-related health risks.

12.
Annu Rev Biomed Data Sci ; 4: 417-447, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34465183

RESUMO

Data from satellite instruments provide estimates of gas and particle levels relevant to human health, even pollutants invisible to the human eye. However, the successful interpretation of satellite data requires an understanding of how satellites relate to other data sources, as well as factors affecting their application to health challenges. Drawing from the expertise and experience of the 2016-2020 NASA HAQAST (Health and Air Quality Applied Sciences Team), we present a review of satellite data for air quality and health applications. We include a discussion of satellite data for epidemiological studies and health impact assessments, as well as the use of satellite data to evaluate air quality trends, support air quality regulation, characterize smoke from wildfires, and quantify emission sources. The primary advantage of satellite data compared to in situ measurements, e.g., from air quality monitoring stations, is their spatial coverage. Satellite data can reveal where pollution levels are highest around the world, how levels have changed over daily to decadal periods, and where pollutants are transported from urban to global scales. To date, air quality and health applications have primarily utilized satellite observations and satellite-derived products relevant to near-surface particulate matter <2.5 µm in diameter (PM2.5) and nitrogen dioxide (NO2). Health and air quality communities have grown increasingly engaged in the use of satellite data, and this trend is expected to continue. From health researchers to air quality managers, and from global applications to community impacts, satellite data are transforming the way air pollution exposure is evaluated.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/efeitos adversos , Poluição do Ar/efeitos adversos , Humanos , Dióxido de Nitrogênio/análise , Material Particulado/efeitos adversos
13.
Weather Clim Soc ; 13(1): 107-123, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34316325

RESUMO

Coccidioidomycosis, or valley fever, is an infectious fungal disease currently endemic to the southwestern United States. Symptoms of valley fever range in severity from flu-like illness to severe morbidity and mortality. Warming temperatures and changes in precipitation patterns may cause the area of endemicity to expand northward throughout the western United States, putting more people at risk for contracting valley fever. This may increase the health and economic burdens from this disease. We developed an approach to describe the relationship between climate conditions and valley fever incidence using historical data and generated projections of future incidence in response to both climate change and population trends using the Climate Change Impacts and Risk Analysis (CIRA) framework developed by the U.S. Environmental Protection Agency. We also developed a method to estimate economic impacts of valley fever that is based on case counts. For our 2000-15 baseline time period, we estimated annual medical costs, lost income, and economic welfare losses for valley fever in the United States were $400,000 per case, and the annual average total cost was $3.9 billion per year. For a high greenhouse gas emission scenario and accounting for population growth, we found that total annual costs for valley fever may increase up to 164% by year 2050 and up to 380% by 2090. By the end of the twenty-first century, valley fever may cost $620,000 per case and the annual average total cost may reach $18.5 billion per year. This work contributes to the broader effort to monetize climate change-attributable damages in the United States.

14.
J Expo Sci Environ Epidemiol ; 31(3): 514-524, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33958706

RESUMO

BACKGROUND: Low-cost sensors have the potential to democratize air pollution information and supplement regulatory networks. However, differentials in access to these sensors could exacerbate existing inequalities in the ability of different communities to respond to the threat of air pollution. OBJECTIVE: Our goal was to analyze patterns of deployments of a commonly used low-cost sensor, as a function of demographics and pollutant concentrations. METHODS: We used Wilcoxon rank sum tests to assess differences between socioeconomic characteristics and PM2.5 concentrations of locations with low-cost sensors and those with regulatory monitors. We used Kolomogorov-Smirnov tests to examine how representative census tracts with sensors were of the United States. We analyzed predictors of the presence, and number of, sensors in a tract using regressions. RESULTS: Census tracts with low-cost sensors were higher income more White and more educated than the US as a whole and than tracts with regulatory monitors. For all states except for California they are in locations with lower annual-average PM2.5 concentrations than regulatory monitors. The existing presence of a regulatory monitor, the percentage of people living above the poverty line and PM2.5 concentrations were associated with the presence of low-cost sensors in a tract. SIGNIFICANCE: Strategies to improve access to low-cost sensors in less-privileged communities are needed to democratize air pollution data.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Demografia , Monitoramento Ambiental , Humanos , Material Particulado/análise , Estados Unidos
15.
Environ Res ; 180: 108810, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31630004

RESUMO

Regulatory monitoring networks are often too sparse to support community-scale PM2.5 exposure assessment while emerging low-cost sensors have the potential to fill in the gaps. To date, limited studies, if any, have been conducted to utilize low-cost sensor measurements to improve PM2.5 prediction with high spatiotemporal resolutions based on statistical models. Imperial County in California is an exemplary region with sparse Air Quality System (AQS) monitors and a community-operated low-cost network entitled Identifying Violations Affecting Neighborhoods (IVAN). This study aims to evaluate the contribution of IVAN measurements to the quality of PM2.5 prediction. We adopted the Random Forest algorithm to estimate daily PM2.5 concentrations at a 1-km spatial resolution using three different PM2.5 datasets (AQS-only, IVAN-only, and AQS/IVAN combined). The results show that the integration of low-cost sensor measurements is an effective way to significantly improve the quality of PM2.5 prediction with an increase of cross-validation (CV) R2 by ~0.2. The IVAN measurements also contributed to the increased importance of emission source-related covariates and more reasonable spatial patterns of PM2.5. The remaining uncertainty in the calibrated IVAN measurements could still cause apparent outliers in the prediction model, highlighting the need for more effective calibration or integration methods to relieve its negative impact.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental , California , Monitoramento Ambiental/economia , Modelos Estatísticos , Material Particulado
16.
Artigo em Inglês | MEDLINE | ID: mdl-30583542

RESUMO

BACKGROUND: Associations between prenatal household air pollution (HAP) exposure or cookstove intervention to reduce HAP and cord blood mononuclear cell (CBMC) mitochondrial deoxyribonucleic acid copy number (mtDNAcn), an oxidative stress biomarker, are unknown. MATERIALS AND METHODS: Pregnant women were recruited and randomized to one of two cookstove interventions, including a clean-burning liquefied petroleum gas (LPG) stove, or control. Prenatal HAP exposure was determined by serial, personal carbon monoxide (CO) measurements. CBMC mtDNAcn was measured by quantitative polymerase chain reaction. Multivariable linear regression determined associations between prenatal CO and cookstove arm on mtDNAcn. Associations between mtDNAcn and birth outcomes and effect modification by infant sex were explored. RESULTS: LPG users had the lowest CO exposures (p = 0.02 by ANOVA). In boys only, average prenatal CO was inversely associated with mtDNAcn (ß = -14.84, SE = 6.41, p = 0.03, per 1ppm increase in CO). When examined by study arm, LPG cookstove had the opposite effect in all children (LPG ß = 19.34, SE = 9.72, p = 0.049), but especially boys (ß = 30.65, SE = 14.46, p = 0.04), as compared to Control. Increased mtDNAcn was associated with improved birth outcomes. CONCLUSIONS: Increased prenatal HAP exposure reduces CBMC mtDNAcn, suggesting cumulative prenatal oxidative stress injury. An LPG stove intervention may reverse this effect. Boys appear most susceptible.


Assuntos
Poluição do Ar em Ambientes Fechados/efeitos adversos , Monóxido de Carbono/efeitos adversos , Culinária/métodos , DNA Mitocondrial/efeitos dos fármacos , Sangue Fetal/efeitos dos fármacos , Adulto , Biomarcadores , Feminino , Gana , Humanos , Recém-Nascido , Masculino , Estresse Oxidativo , Gravidez , Resultado da Gravidez/epidemiologia , Fatores Sexuais , Fatores Socioeconômicos , Adulto Jovem
18.
Air Qual Atmos Health ; 9(1): 51-68, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28659994

RESUMO

Health impact assessments for fine particulate matter (PM2.5) often rely on simulated concentrations generated from air quality models. However, at the global level, these models often run at coarse resolutions, resulting in underestimates of peak concentrations in populated areas. This study aims to quantitatively examine the influence of model resolution on the estimates of mortality attributable to PM2.5 and its species in the USA. We use GEOS-Chem, a global 3-D model of atmospheric composition, to simulate the 2008 annual average concentrations of PM2.5 and its six species over North America. The model was run at a fine resolution of 0.5 × 0.66° and a coarse resolution of 2 × 2.5°, and mortality was calculated using output at the two resolutions. Using the fine-modeled concentrations, we estimate that 142,000 PM2.5-related deaths occurred in the USA in 2008, and the coarse resolution produces a national mortality estimate that is 8 % lower than the fine-model estimate. Our spatial analysis of mortality shows that coarse resolutions tend to substantially underestimate mortality in large urban centers. We also re-grid the fine-modeled concentrations to several coarser resolutions and repeat mortality calculation at these resolutions. We found that model resolution tends to have the greatest influence on mortality estimates associated with primary species and the least impact on dust-related mortality. Our findings provide evidence of possible biases in quantitative PM2.5 health impact assessments in applications of global atmospheric models at coarse spatial resolutions.

19.
Environ Health ; 14: 71, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26310854

RESUMO

BACKGROUND: Many types of tree pollen trigger seasonal allergic illness, but their population-level impacts on allergy and asthma morbidity are not well established, likely due to the paucity of long records of daily pollen data that allow analysis of multi-day effects. Our objective in this study was therefore to determine the impacts of individual spring tree pollen types on over-the-counter allergy medication sales and asthma emergency department (ED) visits. METHODS: Nine clinically-relevant spring tree pollen genera (elm, poplar, maple, birch, beech, ash, sycamore/London planetree, oak, and hickory) measured in Armonk, NY, were analyzed for their associations with over-the-counter allergy medication sales and daily asthma syndrome ED visits from patients' chief complaints or diagnosis codes in New York City during March 1st through June 10th, 2002-2012. Multi-day impacts of pollen on the outcomes (0-3 days and 0-7 days for the medication sales and ED visits, respectively) were estimated using a distributed lag Poisson time-series model adjusting for temporal trends, day-of-week, weather, and air pollution. For asthma syndrome ED visits, age groups were also analyzed. Year-to-year variation in the average peak dates and the 10th-to-90th percentile duration between pollen and the outcomes were also examined with Spearman's rank correlation. RESULTS: Mid-spring pollen types (maple, birch, beech, ash, oak, and sycamore/London planetree) showed the strongest significant associations with both outcomes, with cumulative rate ratios up to 2.0 per 0-to-98th percentile pollen increase (e.g., 1.9 [95% CI: 1.7, 2.1] and 1.7 [95% CI: 1.5, 1.9] for the medication sales and ED visits, respectively, for ash). Lagged associations were longer for asthma syndrome ED visits than for the medication sales. Associations were strongest in children (ages 5-17; e.g., a cumulative rate ratio of 2.6 [95% CI: 2.1, 3.1] per 0-to-98th percentile increase in ash). The average peak dates and durations of some of these mid-spring pollen types were also associated with those of the outcomes. CONCLUSIONS: Tree pollen peaking in mid-spring exhibit substantive impacts on allergy, and asthma exacerbations, particularly in children. Given the narrow time window of these pollen peak occurrences, public health and clinical approaches to anticipate and reduce allergy/asthma exacerbation should be developed.


Assuntos
Alérgenos/efeitos adversos , Asma/epidemiologia , Hipersensibilidade/epidemiologia , Medicamentos Compostos contra Resfriado, Influenza e Alergia/economia , Pólen/efeitos adversos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Asma/etiologia , Criança , Pré-Escolar , Serviço Hospitalar de Emergência/estatística & dados numéricos , Feminino , Humanos , Hipersensibilidade/etiologia , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque/epidemiologia , Medicamentos sem Prescrição/economia , Adulto Jovem
20.
Environ Health Perspect ; 123(7): 672-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25782056

RESUMO

BACKGROUND: As a result of climate change, the frequency of extreme temperature events is expected to increase, and such events are associated with increased morbidity and mortality. Vulnerability patterns, and corresponding adaptation strategies, are most usefully conceptualized at a local level. METHODS: We used a case-only analysis to examine subject and neighborhood characteristics that modified the association between heat waves and mortality. All deaths of New York City residents from 2000 through 2011 were included in this analysis. Meteorological data were obtained from the National Climatic Data Center. Modifying characteristics were obtained from the death record and geographic data sets. RESULTS: A total of 234,042 adult deaths occurred during the warm season of our study period. Compared with other warm-season days, deaths during heat waves were more likely to occur in black (non-Hispanic) individuals than other race/ethnicities [odds ratio (OR) = 1.08; 95% CI: 1.03, 1.12], more likely to occur at home than in institutions and hospital settings (OR = 1.11; 95% CI: 1.06, 1.16), and more likely among those living in census tracts that received greater public assistance (OR = 1.05; 95% CI: 1.01, 1.09). Finally, deaths during heat waves were more likely among residents in areas of the city with higher relative daytime summer surface temperature and less likely among residents living in areas with more green space. CONCLUSION: Mortality during heat waves varies widely within a city. Understanding which individuals and neighborhoods are most vulnerable can help guide local preparedness efforts.


Assuntos
Temperatura Alta/efeitos adversos , Mortalidade , Adulto , Negro ou Afro-Americano/estatística & dados numéricos , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Cidade de Nova Iorque/epidemiologia , Características de Residência , Fatores de Risco , Estações do Ano , Fatores Socioeconômicos , População Urbana/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA