Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Chemistry ; 11(11): 3363-74, 2005 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-15798973

RESUMO

Novel molecular clips with anthracene sidewalls (1 a-c) were synthesized; they form stable host-guest complexes with a variety of electron-deficient aromatic and quinoid molecules. According to single-crystal structure analyses of clip 1 c and 1,2,4,5-tetracyanobenzene (TCNB) complex 14@1 b, the clips' anthracene sidewalls have to be compressed substantially during the complex formation to provide attractive pi-pi interactions between the aromatic guest molecule and the two anthracene sidewalls in the complex. The compression and expansion of aromatic sidewalls are calculated by molecular mechanics to be low-energy processes, so the energy required for compression of the anthracene sidewalls during complex formation is apparently overcompensated by the gain in energy resulting from the attractive pi-pi interactions. The finding that complexes of the clips 1 a-c are more stable than those of the corresponding clips 2 a-c can be explained in terms of the larger van der Waals contact surfaces of the anthracene sidewalls in 1 a-c (relative to the naphthalene sidewalls in 2 a-c). Color changes resulting from charge-transfer (CT) bands are observed in complex formation by 1 a-c: from colorless to red or purple with TCNB (14), and from yellow to green with 2,4,7-trinitro-9-fluorenone TNF (17). Independently, the host 1 b and guest 14 fluoresce from their respective excited singlet states, whilst in the complex 14@1 b the charge-transfer state quenches the higher-energy singlet states of the two components, and as a result luminescence is only observed from this new CT state. To the best of our knowledge, complex 14@1 b is the first example of CT luminescence from a host-guest complex. The binding constant determined for the formation of the TCNB complex 14@1 b from a UV/Vis titration experiment (Ka = 12 400 m(-1)) agrees well with the value (K(a) = 12 800 m(-1)) obtained by 1H NMR titration.


Assuntos
Antracenos/síntese química , Derivados de Benzeno/química , Fluorenos/química , Naftalenos/síntese química , Nitrilas/química , Antracenos/química , Cristalografia por Raios X , Medições Luminescentes , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Método de Monte Carlo , Naftalenos/química , Teoria Quântica , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta
2.
Chemistry ; 11(2): 477-94, 2005 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-15565576

RESUMO

A new class of receptor molecules is presented that is highly selective for N-alkylpyridinium ions and electron-poor aromatics. Its key feature is the combination of a well-preorganized molecular clip with an electron-rich inner cavity and strategically placed, flanking bis-phosphonate monoester anions. This shape and arrangement of binding sites attracts predominantly flat electron-poor aromatics in water, binds them mainly by pi-cation, pi-pi, CH-pi, and hydrophobic interactions, and leads to their highly efficient desolvation. NAD(+) and NADP, the important cofactors of many redox enzymes, are recognized by the new receptor molecule, which embraces the catalytically active nicotinamide site and the adenine unit. Even nucleosides such as adenosine are likewise drawn into the clip's cavity. Complex formation and structures were examined by one- and two-dimensional NMR spectroscopy, Job plot analyses, and isothermal titration microcalorimetric (ITC) measurements, as well as quantum chemical calculations of (1)H NMR shifts. The new receptor molecule is a promising tool for controlling enzymatic oxidation processes and for DNA chemistry.


Assuntos
NAD/química , Compostos de Piridínio/química , Calorimetria , Simulação por Computador , DNA/química , DNA/genética , Difosfonatos/química , Indicadores e Reagentes , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Método de Monte Carlo , Espectrometria de Massas por Ionização por Electrospray , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA