Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Lancet ; 397(10272): 398-408, 2021 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-33516338

RESUMO

BACKGROUND: The past two decades have seen expansion of childhood vaccination programmes in low-income and middle-income countries (LMICs). We quantify the health impact of these programmes by estimating the deaths and disability-adjusted life-years (DALYs) averted by vaccination against ten pathogens in 98 LMICs between 2000 and 2030. METHODS: 16 independent research groups provided model-based disease burden estimates under a range of vaccination coverage scenarios for ten pathogens: hepatitis B virus, Haemophilus influenzae type B, human papillomavirus, Japanese encephalitis, measles, Neisseria meningitidis serogroup A, Streptococcus pneumoniae, rotavirus, rubella, and yellow fever. Using standardised demographic data and vaccine coverage, the impact of vaccination programmes was determined by comparing model estimates from a no-vaccination counterfactual scenario with those from a reported and projected vaccination scenario. We present deaths and DALYs averted between 2000 and 2030 by calendar year and by annual birth cohort. FINDINGS: We estimate that vaccination of the ten selected pathogens will have averted 69 million (95% credible interval 52-88) deaths between 2000 and 2030, of which 37 million (30-48) were averted between 2000 and 2019. From 2000 to 2019, this represents a 45% (36-58) reduction in deaths compared with the counterfactual scenario of no vaccination. Most of this impact is concentrated in a reduction in mortality among children younger than 5 years (57% reduction [52-66]), most notably from measles. Over the lifetime of birth cohorts born between 2000 and 2030, we predict that 120 million (93-150) deaths will be averted by vaccination, of which 58 million (39-76) are due to measles vaccination and 38 million (25-52) are due to hepatitis B vaccination. We estimate that increases in vaccine coverage and introductions of additional vaccines will result in a 72% (59-81) reduction in lifetime mortality in the 2019 birth cohort. INTERPRETATION: Increases in vaccine coverage and the introduction of new vaccines into LMICs have had a major impact in reducing mortality. These public health gains are predicted to increase in coming decades if progress in increasing coverage is sustained. FUNDING: Gavi, the Vaccine Alliance and the Bill & Melinda Gates Foundation.


Assuntos
Controle de Doenças Transmissíveis , Doenças Transmissíveis/mortalidade , Doenças Transmissíveis/virologia , Modelos Teóricos , Mortalidade/tendências , Anos de Vida Ajustados por Qualidade de Vida , Vacinação , Pré-Escolar , Controle de Doenças Transmissíveis/economia , Controle de Doenças Transmissíveis/estatística & dados numéricos , Doenças Transmissíveis/economia , Análise Custo-Benefício , Países em Desenvolvimento , Feminino , Saúde Global , Humanos , Programas de Imunização , Masculino , Vacinação/economia , Vacinação/estatística & dados numéricos
3.
BMC Med ; 18(1): 124, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32375776

RESUMO

BACKGROUND: To mitigate and slow the spread of COVID-19, many countries have adopted unprecedented physical distancing policies, including the UK. We evaluate whether these measures might be sufficient to control the epidemic by estimating their impact on the reproduction number (R0, the average number of secondary cases generated per case). METHODS: We asked a representative sample of UK adults about their contact patterns on the previous day. The questionnaire was conducted online via email recruitment and documents the age and location of contacts and a measure of their intimacy (whether physical contact was made or not). In addition, we asked about adherence to different physical distancing measures. The first surveys were sent on Tuesday, 24 March, 1 day after a "lockdown" was implemented across the UK. We compared measured contact patterns during the "lockdown" to patterns of social contact made during a non-epidemic period. By comparing these, we estimated the change in reproduction number as a consequence of the physical distancing measures imposed. We used a meta-analysis of published estimates to inform our estimates of the reproduction number before interventions were put in place. RESULTS: We found a 74% reduction in the average daily number of contacts observed per participant (from 10.8 to 2.8). This would be sufficient to reduce R0 from 2.6 prior to lockdown to 0.62 (95% confidence interval [CI] 0.37-0.89) after the lockdown, based on all types of contact and 0.37 (95% CI = 0.22-0.53) for physical (skin to skin) contacts only. CONCLUSIONS: The physical distancing measures adopted by the UK public have substantially reduced contact levels and will likely lead to a substantial impact and a decline in cases in the coming weeks. However, this projected decline in incidence will not occur immediately as there are significant delays between infection, the onset of symptomatic disease, and hospitalisation, as well as further delays to these events being reported. Tracking behavioural change can give a more rapid assessment of the impact of physical distancing measures than routine epidemiological surveillance.


Assuntos
Número Básico de Reprodução , Infecções por Coronavirus , Epidemias/prevenção & controle , Pandemias , Pneumonia Viral , Isolamento Social , Atividades Cotidianas , Adulto , Betacoronavirus , COVID-19 , Busca de Comunicante , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/transmissão , Política de Saúde , Humanos , Incidência , Relações Interpessoais , Modelos Teóricos , Pandemias/prevenção & controle , Pneumonia Viral/epidemiologia , Pneumonia Viral/prevenção & controle , Pneumonia Viral/transmissão , SARS-CoV-2 , Inquéritos e Questionários , Reino Unido/epidemiologia
4.
Epidemics ; 10: 97-101, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25843393

RESUMO

Eradication and elimination are increasingly a part of the global health agenda. Once control measures have driven infection to low levels, the ecology of disease may change posing challenges for eradication efforts. These challenges vary from identifying pockets of susceptibles, improving monitoring during and after the endgame, to quantifying the economics of disease eradication versus sustained control, all of which are shaped and influenced by processes of loss of immunity, susceptible build-up, emergence of resistance, population heterogeneities and non-compliance with control measures. Here we discuss how modelling can be used to address these challenges.


Assuntos
Erradicação de Doenças/métodos , Controle de Doenças Transmissíveis/economia , Controle de Doenças Transmissíveis/métodos , Doenças Transmissíveis/economia , Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/imunologia , Análise Custo-Benefício , Erradicação de Doenças/economia , Suscetibilidade a Doenças/epidemiologia , Humanos , Modelos Estatísticos , Vigilância da População
5.
Proc Natl Acad Sci U S A ; 108(34): 14366-70, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21825129

RESUMO

Epidemic theory predicts that the vaccination threshold required to interrupt local transmission of an immunizing infection like measles depends only on the basic reproductive number and hence transmission rates. When the search for optimal strategies is expanded to incorporate economic constraints, the optimum for disease control in a single population is determined by relative costs of infection and control, rather than transmission rates. Adding a spatial dimension, which precludes local elimination unless it can be achieved globally, can reduce or increase optimal vaccination levels depending on the balance of costs and benefits. For weakly coupled populations, local optimal strategies agree with the global cost-effective strategy; however, asymmetries in costs can lead to divergent control optima in more strongly coupled systems--in particular, strong regional differences in costs of vaccination can preclude local elimination even when elimination is locally optimal. Under certain conditions, it is locally optimal to share vaccination resources with other populations.


Assuntos
Controle de Doenças Transmissíveis/economia , Controle de Doenças Transmissíveis/estatística & dados numéricos , Doenças Transmissíveis/economia , Doenças Transmissíveis/epidemiologia , Imunização/economia , Imunização/estatística & dados numéricos , Doenças Transmissíveis/imunologia , Emigração e Imigração , Recursos em Saúde/economia , Recursos em Saúde/estatística & dados numéricos , Humanos , Internacionalidade , Modelos Biológicos , Dinâmica Populacional , Vacinação/economia , Vacinação/estatística & dados numéricos
6.
Proc Biol Sci ; 276(1666): 2469-76, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19364743

RESUMO

Heterogeneities in transmission among hosts can be very important in shaping infectious disease dynamics. In mammals with strong social organization, such heterogeneities are often structured by functional stage: juveniles, subadults and adults. We investigate the importance of such stage-related heterogeneities in shaping the 2002 phocine distemper virus (PDV) outbreak in the Dutch Wadden Sea, when more than 40 per cent of the harbour seals were killed. We do this by comparing the statistical fit of a hierarchy of models with varying transmission complexity: homogeneous versus heterogeneous mixing and density- versus frequency-dependent transmission. We use the stranding data as a proxy for incidence and use Poisson likelihoods to estimate the 'who acquires infection from whom' (WAIFW) matrix. Statistically, the model with strong heterogeneous mixing and density-dependent transmission was found to best describe the transmission dynamics. However, patterns of incidence support a model of frequency-dependent transmission among adults and juveniles. Based on the maximum-likelihood WAIFW matrix estimates, we use the next-generation formalism to calculate an R(0) between 2 and 2.5 for the Dutch 2002 PDV epidemic.


Assuntos
Surtos de Doenças/veterinária , Vírus da Cinomose Focina , Cinomose/epidemiologia , Phoca/virologia , Fatores Etários , Animais , Cinomose/transmissão , Cinomose/virologia , Incidência , Funções Verossimilhança , Países Baixos , Oceanos e Mares , Phoca/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA