Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Environ Sci Technol ; 57(51): 21662-21672, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38079372

RESUMO

Air pollution is still one of the most severe problems in northern China, especially in the Jing-Jin-Ji region around Beijing. In recent years, China has implemented many stringent policies to address the air quality issue, including promoting energy transition toward cleaner fuels in residential sectors. But until 2020, even in the Jing-Jin-Ji region, nearly half of the rural households still use solid fuels for heating. For residents who are not covered by the clean heating campaign, we analyze five potential mitigation strategies and evaluate their environmental effects as well as the associated health benefits and costs. We estimate that substitution with electricity or gas would reduce air pollution and premature mortality more strongly, while the relatively low investment costs of implementing clean coal or biomass pellet lead to a larger benefit-cost ratio, indicating higher cost efficiency. Hence, clean coal or biomass pellet could be transitional substitution options for the less developed or remote areas which cannot afford a total transition toward electricity or natural gas in the short term.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Poluentes Atmosféricos/análise , Material Particulado/análise , Análise Custo-Benefício , Poluição do Ar/análise , China , Carvão Mineral/análise , Políticas , Poluição do Ar em Ambientes Fechados/análise , Culinária
2.
Proc Natl Acad Sci U S A ; 119(34): e2206131119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969735

RESUMO

Split air conditioners (ACs) are the most used appliance for space cooling worldwide. The phase-down of refrigerants with high global warming potential (GWP) prescribed by the Kigali Amendment to the Montreal Protocol has triggered a major effort to find less harmful alternative refrigerants. HFC-32 is currently the most common refrigerant to replace HFC-410A in split ACs. The GWP of HFC-32 is about one-third that of HFC-410A but still considerably higher than that of a growing number of nonfluorinated alternatives like propane with a GWP of <1, which have recently become commercially available for split ACs. Here, we show that a switch to propane as an energy-efficient and commercially available low-GWP alternative in split ACs could avoid 0.09 (0.06 to 0.12) °C increase in global temperature by the end of the century. This is significantly more than the 0.03 (0.02 to 0.05) °C avoided warming from a complete switch to HFC-32 in split ACs.


Assuntos
Poluentes Atmosféricos/análise , Aquecimento Global , Hidrocarbonetos Fluorados/análise , Propano , Desenvolvimento Sustentável , Temperatura
3.
Environ Int ; 133(Pt A): 105147, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31518932

RESUMO

Exposure to ambient particulate matter is a leading risk factor for environmental public health in India. While Indian authorities implemented several measures to reduce emissions from the power, industry and transportation sectors over the last years, such strategies appear to be insufficient to reduce the ambient fine particulate matter (PM2.5) concentration below the Indian National Ambient Air Quality Standard (NAAQS) of 40 µg/m3 across the country. This study explores pathways towards achieving the NAAQS in India in the context of the dynamics of social and economic development. In addition, to inform action at the subnational levels in India, we estimate the exposure to ambient air pollution in the current legislations and alternative policy scenarios based on simulations with the GAINS integrated assessment model. The analysis reveals that in many of the Indian States emission sources that are outside of their immediate jurisdictions make the dominating contributions to (population-weighted) ambient pollution levels of PM2.5. Consequently, most of the States cannot achieve significant improvements in their air quality and population exposure on their own without emission reductions in the surrounding regions, and any cost-effective strategy requires regionally coordinated approaches. Advanced technical emission control measures could provide NAAQS-compliant air quality for 60% of the Indian population. However, if combined with national sustainable development strategies, an additional 25% population will be provided with clean air, which appears to be a significant co-benefit on air quality (totaling 85%).


Assuntos
Poluentes Atmosféricos/química , Poluição do Ar/legislação & jurisprudência , Monitoramento Ambiental/métodos , Material Particulado/química , Saúde Pública/legislação & jurisprudência , Poluição do Ar/análise , Monitoramento Ambiental/legislação & jurisprudência , Humanos , Índia
4.
Environ Int ; 125: 236-244, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30731373

RESUMO

Air pollution is one of the most harmful consequences of China's rapid economic development and urbanization. Particularly in the Beijing-Tianjin-Hebei (BTH) regions, particulate matter concentrations have consistently exceeded the national air quality standards. Over the last years, China implemented ambitious measures to reduce emissions from the power, industry and transportation sectors, with notable success during the 11th and 12th Five Year Plan (FYP) periods. However, such strategies appear to be insufficient to reduce the ambient PM2.5 concentration below the National Air Quality Standard of 35 µg m-3 across the BTH region within the next 15 years. We find that a comprehensive mitigation strategy for the residential sector in the BTH region would deliver substantial air quality benefits. Beyond the already planned expansion of district heating and natural gas distribution in urban centers and the foreseen curtailment of coal use for households, such a strategy would redirect some natural gas from power generation units towards the residential sector. Rural households would replace biomass for cooking by liquid petroleum gas (LPG) and electricity, and substitute coal for heating by briquettes. Jointly, these measures could reduce the primary PM2.5 and SO2 emissions by 28% and 11%, respectively, and the population-weighted PM2.5 concentrations by 13%, i.e., from 68 µg m-3 to 59 µg m-3. We estimate that such a strategy would reduce premature deaths attributable to ambient and indoor air pollution by almost one third.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar , Recuperação e Remediação Ambiental , Habitação , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Pequim , China , Carvão Mineral/análise , Culinária , Calefação , Humanos , Mortalidade Prematura , Material Particulado/análise
5.
Atmos Chem Phys ; 18(11): 8017-8039, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33679902

RESUMO

India is currently experiencing degraded air quality, and future economic development will lead to challenges for air quality management. Scenarios of sectoral emissions of fine particulate matter and its precursors were developed and evaluated for 2015-2050, under specific pathways of diffusion of cleaner and more energy-efficient technologies. The impacts of individual source sectors on PM2.5 concentrations were assessed through systematic simulations of spatially and temporally resolved particulate matter concentrations, using the GEOS-Chem model, followed by population-weighted aggregation to national and state levels. We find that PM2.5 pollution is a pan-India problem, with a regional character, and is not limited to urban areas or megacities. Under present-day emissions, levels in most states exceeded the national PM2.5 annual standard (40 µg m-3). Sources related to human activities were responsible for the largest proportion of the present-day population exposure to PM2.5 in India. About 60 % of India's mean population-weighted PM2.5 concentrations come from anthropogenic source sectors, while the remainder are from "other" sources, windblown dust and extra-regional sources. Leading contributors are residential biomass combustion, power plant and industrial coal combustion and anthropogenic dust (including coal fly ash, fugitive road dust and waste burning). Transportation, brick production and distributed diesel were other contributors to PM2.5. Future evolution of emissions under regulations set at current levels and promulgated levels caused further deterioration of air quality in 2030 and 2050. Under an ambitious prospective policy scenario, promoting very large shifts away from traditional biomass technologies and coal-based electricity generation, significant reductions in PM2.5 levels are achievable in 2030 and 2050. Effective mitigation of future air pollution in India requires adoption of aggressive prospective regulation, currently not formulated, for a three-pronged switch away from (i) biomass-fuelled traditional technologies, (ii) industrial coal-burning and (iii) open burning of agricultural residue. Future air pollution is dominated by industrial process emissions, reflecting larger expansion in industrial, rather than residential energy demand. However, even under the most active reductions envisioned, the 2050 mean exposure, excluding any impact from windblown mineral dust, is estimated to be nearly 3 times higher than the WHO Air Quality Guideline.

6.
Nature ; 545(7655): 467-471, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28505629

RESUMO

Vehicle emissions contribute to fine particulate matter (PM2.5) and tropospheric ozone air pollution, affecting human health, crop yields and climate worldwide. On-road diesel vehicles produce approximately 20 per cent of global anthropogenic emissions of nitrogen oxides (NOx), which are key PM2.5 and ozone precursors. Regulated NOx emission limits in leading markets have been progressively tightened, but current diesel vehicles emit far more NOx under real-world operating conditions than during laboratory certification testing. Here we show that across 11 markets, representing approximately 80 per cent of global diesel vehicle sales, nearly one-third of on-road heavy-duty diesel vehicle emissions and over half of on-road light-duty diesel vehicle emissions are in excess of certification limits. These excess emissions (totalling 4.6 million tons) are associated with about 38,000 PM2.5- and ozone-related premature deaths globally in 2015, including about 10 per cent of all ozone-related premature deaths in the 28 European Union member states. Heavy-duty vehicles are the dominant contributor to excess diesel NOx emissions and associated health impacts in almost all regions. Adopting and enforcing next-generation standards (more stringent than Euro 6/VI) could nearly eliminate real-world diesel-related NOx emissions in these markets, avoiding approximately 174,000 global PM2.5- and ozone-related premature deaths in 2040. Most of these benefits can be achieved by implementing Euro VI standards where they have not yet been adopted for heavy-duty vehicles.


Assuntos
União Europeia/economia , Gasolina/análise , Gasolina/economia , Óxido Nítrico/análise , Óxido Nítrico/intoxicação , Emissões de Veículos/prevenção & controle , Emissões de Veículos/intoxicação , Europa (Continente)/epidemiologia , União Europeia/estatística & dados numéricos , Gasolina/efeitos adversos , Humanos , Mortalidade Prematura , Ozônio/análise , Ozônio/economia , Ozônio/intoxicação , Material Particulado/análise , Material Particulado/economia , Material Particulado/intoxicação , Emissões de Veículos/análise
7.
Sci Total Environ ; 514: 439-49, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25687670

RESUMO

BACKGROUND: Ozone and PM2.5 are current risk factors for premature death all over the globe. In coming decades, substantial improvements in public health may be achieved by reducing air pollution. To better understand the potential of emissions policies, studies are needed that assess possible future health impacts under alternative assumptions about future emissions and climate across multiple spatial scales. METHOD: We used consistent climate-air-quality-health modeling framework across three geographical scales (World, Europe and Ile-de-France) to assess future (2030-2050) health impacts of ozone and PM2.5 under two emissions scenarios (Current Legislation Emissions, CLE, and Maximum Feasible Reductions, MFR). RESULTS: Consistently across the scales, we found more reductions in deaths under MFR scenario compared to CLE. 1.5 [95% CI: 0.4, 2.4] million CV deaths could be delayed each year in 2030 compared to 2010 under MFR scenario, 84% of which would occur in Asia, especially in China. In Europe, the benefits under MFR scenario (219000 CV deaths) are noticeably larger than those under CLE (109,000 CV deaths). In Ile-de-France, under MFR more than 2830 annual CV deaths associated with PM2.5 changes could be delayed in 2050 compared to 2010. In Paris, ozone-related respiratory mortality should increase under both scenarios. CONCLUSION: Multi-scale HIAs can illustrate the difference in direct consequences of costly mitigation policies and provide results that may help decision-makers choose between different policy alternatives at different scales.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/estatística & dados numéricos , Exposição Ambiental/estatística & dados numéricos , Avaliação do Impacto na Saúde , Clima , Monitoramento Ambiental , Humanos , Ozônio/análise , Material Particulado/análise , Saúde Pública
8.
Environ Health Perspect ; 122(12): 1314-20, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25192243

RESUMO

BACKGROUND: Approximately 2.8 billion people cook with solid fuels. Research has focused on the health impacts of indoor exposure to fine particulate pollution. Here, for the 2010 Global Burden of Disease project (GBD 2010), we evaluated the impact of household cooking with solid fuels on regional population-weighted ambient PM2.5 (particulate matter ≤ 2.5 µm) pollution (APM2.5). OBJECTIVES: We estimated the proportion and concentrations of APM2.5 attributable to household cooking with solid fuels (PM2.5-cook) for the years 1990, 2005, and 2010 in 170 countries, and associated ill health. METHODS: We used an energy supply-driven emissions model (GAINS; Greenhouse Gas and Air Pollution Interactions and Synergies) and source-receptor model (TM5-FASST) to estimate the proportion of APM2.5 produced by households and the proportion of household PM2.5 emissions from cooking with solid fuels. We estimated health effects using GBD 2010 data on ill health from APM2.5 exposure. RESULTS: In 2010, household cooking with solid fuels accounted for 12% of APM2.5 globally, varying from 0% of APM2.5 in five higher-income regions to 37% (2.8 µg/m3 of 6.9 µg/m3 total) in southern sub-Saharan Africa. PM2.5-cook constituted > 10% of APM2.5 in seven regions housing 4.4 billion people. South Asia showed the highest regional concentration of APM2.5 from household cooking (8.6 µg/m3). On the basis of GBD 2010, we estimate that exposure to APM2.5 from cooking with solid fuels caused the loss of 370,000 lives and 9.9 million disability-adjusted life years globally in 2010. CONCLUSIONS: PM2.5 emissions from household cooking constitute an important portion of APM2.5 concentrations in many places, including India and China. Efforts to improve ambient air quality will be hindered if household cooking conditions are not addressed.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluição do Ar em Ambientes Fechados/análise , Culinária , Óleos Combustíveis/efeitos adversos , África Subsaariana , Efeitos Psicossociais da Doença , Exposição Ambiental , Características da Família , Humanos
9.
Environ Sci Technol ; 47(8): 3571-9, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23473305

RESUMO

Cost-benefit analysis can be used to provide guidance for emerging policy priorities in reducing nitrogen (N) pollution. This paper provides a critical and comprehensive assessment of costs and benefits of the various flows of N on human health, ecosystems and climate stability in order to identify major options for mitigation. The social cost of impacts of N in the EU27 in 2008 was estimated between €75-485 billion per year. A cost share of around 60% is related to emissions to air. The share of total impacts on human health is about 45% and may reflect the higher willingness to pay for human health than for ecosystems or climate stability. Air pollution by nitrogen also generates social benefits for climate by present cooling effects of N containing aerosol and C-sequestration driven by N deposition, amounting to an estimated net benefit of about €5 billion/yr. The economic benefit of N in primary agricultural production ranges between €20-80 billion/yr and is lower than the annual cost of pollution by agricultural N which is in the range of €35-230 billion/yr. Internalizing these environmental costs would lower the optimum annual N-fertilization rate in Northwestern Europe by about 50 kg/ha. Acknowledging the large uncertainties and conceptual issues of our cost-benefit estimates, the results support the priority for further reduction of NH3 and NOx emissions from transport and agriculture beyond commitments recently agreed in revision of the Gothenburg Protocol.


Assuntos
Poluição do Ar/economia , Poluição do Ar/prevenção & controle , Nitrogênio/economia , Análise Custo-Benefício , Europa (Continente) , União Europeia , Fertilizantes/economia , Planejamento em Saúde/economia , Humanos
10.
Science ; 335(6065): 183-9, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22246768

RESUMO

Tropospheric ozone and black carbon (BC) contribute to both degraded air quality and global warming. We considered ~400 emission control measures to reduce these pollutants by using current technology and experience. We identified 14 measures targeting methane and BC emissions that reduce projected global mean warming ~0.5°C by 2050. This strategy avoids 0.7 to 4.7 million annual premature deaths from outdoor air pollution and increases annual crop yields by 30 to 135 million metric tons due to ozone reductions in 2030 and beyond. Benefits of methane emissions reductions are valued at $700 to $5000 per metric ton, which is well above typical marginal abatement costs (less than $250). The selected controls target different sources and influence climate on shorter time scales than those of carbon dioxide-reduction measures. Implementing both substantially reduces the risks of crossing the 2°C threshold.


Assuntos
Poluentes Atmosféricos , Poluição do Ar/prevenção & controle , Mudança Climática , Abastecimento de Alimentos , Saúde , Metano , Ozônio , Fuligem , Aerossóis , Poluentes Atmosféricos/análise , Simulação por Computador , Análise Custo-Benefício , Humanos , Metano/análise , Mortalidade Prematura , Ozônio/análise , Fuligem/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA