Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 920: 170766, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38350572

RESUMO

Lead (Pb) and mercury (Hg) are neurodevelopmental toxicants that pose risks to cognitive and behavioral health. Given early childhood's vulnerability to these metals, understanding their sources and pathways of exposure during infancy is crucial for public health. During the weaning process, infants may be exposed to metals through the baby food they consume. We aimed to assess metal exposure through homemade weaning foods by analyzing 288 samples consumed by 157 Korean infants aged 6-, 9-, 12-, 15-, and 24-27 months. Pb was detected in 65 % of samples, with levels reaching up to 169 ng/g. Notably, 58 % exceeded the Maximum Level (ML) of 10 ng/g, with a median concentration of 14.7 ng/g fresh weight. Total Hg was found in 88 % of samples, with a median concentration of 4.56 ng/g fresh weight. Estimated median daily intakes of Pb and Hg were 0.29 and 0.09 µg/kg/d, respectively. Considering a benchmark dose for Pb (0.5 µg/kg/d by EFSA), 94 % (the margin of exposure <10) of all age groups was estimated to have a potential health concern associated with homemade baby food consumption. For Hg, only 6 % exceeded a hazard quotients of 1 compared to a provisional tolerable weekly intake for Hg (4 µg/kg/week by WHO). This study marks the first direct assessment of daily Pb and Hg intake through homemade baby food among Korean infants. Our findings underscore the urgent need for heightened awareness regarding metal exposure through homemade baby food.


Assuntos
Chumbo , Mercúrio , Lactente , Humanos , Pré-Escolar , Exposição Ambiental/análise , Desmame , Mercúrio/análise , Medição de Risco , Contaminação de Alimentos/análise , República da Coreia , Cádmio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA