Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Environ Int ; 186: 108504, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537584

RESUMO

Insufficient data on nano- and microplastics (NMP) hinder robust evaluation of their potential health risks. Methodological disparities and the absence of established toxicity thresholds impede the comparability and practical application of research findings. The diverse attributes of NMP, such as variations in sizes, shapes, and compositions, complicate human health risk assessment. Although probability density functions (PDFs) show promise in capturing this diversity, their integration into risk assessment frameworks is limited. Physiologically based kinetic (PBK) models offer a potential solution to bridge the gap between external exposure and internal dosimetry for risk evaluation. However, the heterogeneity of NMP poses challenges for accurate biodistribution modeling. A literature review, encompassing both experimental and modeling studies, was conducted to examine biodistribution studies of monodisperse micro- and nanoparticles. The literature search in PubMed and Scopus databases yielded 39 studies that met the inclusion criteria. Evaluation criteria were adapted from previous Quality Assurance and Quality Control (QA-QC) studies, best practice guidelines from WHO (2010), OECD guidance (2021), and additional criteria specific to NMP risk assessment. Subsequently, a conceptual framework for a comprehensive NMP-PBK model was developed, addressing the multidimensionality of NMP particles. Parameters for an NMP-PBK model are presented. QA-QC evaluations revealed that most experimental studies scored relatively well (>0) in particle characterizations and environmental settings but fell short in criteria application for biodistribution modeling. The evaluation of modeling studies revealed that information regarding the model type and allometric scaling requires improvement. Three potential applications of PDFs in PBK modeling of NMP are identified: capturing the multidimensionality of the NMP continuum, quantifying the probabilistic definition of external exposure, and calculating the bio-accessibility fraction of NMP in the human body. A framework for an NMP-PBK model is proposed, integrating PDFs to enhance the assessment of NMP's impact on human health.


Assuntos
Exposição Ambiental , Microplásticos , Nanopartículas , Medição de Risco , Humanos , Microplásticos/análise , Distribuição Tecidual
2.
J Hazard Mater ; 467: 133732, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38350316

RESUMO

The risk characterization of microplastics (MP) in soil is challenging due to the non-alignment of existing exposure and effect data. Therefore, we applied data alignment methods to assess the risks of MP in soils subject to different sources of MP pollution. Our findings reveal variations in MP characteristics among sources, emphasizing the need for source-specific alignments. To assess the reliability of the data, we applied Quality Assurance/Quality Control (QA/QC) screening tools. Risk assessment was carried out probabilistically, considering uncertainties in data alignments and effect thresholds. The Hazardous Concentrations for 5% (HC5) of the species were significantly higher compared to earlier studies and ranged between 4.0 × 107 and 2.3 × 108 particles (1-5000 µm)/kg of dry soil for different MP sources and ecologically relevant metrics. The highest risk was calculated for soils with MP entering via diffuse and unspecified local sources, i.e., "background pollution". However, the source with the highest proportion of high-risk values was sewage, followed by background pollution and mulching. Notably, locations exceeding the risk threshold obtained low scores in the QA/QC assessment. No risks were observed for soils with compost. To improve future risk assessments, we advise to primarily test environmentally relevant MP mixtures and adhere to strict quality criteria.

3.
J Hazard Mater ; 441: 129814, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36075174

RESUMO

Determining the risks of microplastics is difficult because data is of variable quality and cannot be compared. Although sediments are important sinks for microplastics, no holistic risk assessment framework is available for this compartment. Here we assess the risks of microplastics in freshwater sediments worldwide, using strict quality criteria and alignment methods. Published exposure data were screened for quality using new criteria for microplastics in sediment and were rescaled to the standard 1-5000 µm microplastic size range. Threshold effect data were also screened for quality and were aligned to account for the polydispersity of environmental microplastics and for their bioaccessible fraction. Risks were characterized for effects triggered by food dilution or translocation, using ingested particle volume and surface area as ecologically relevant metrics, respectively. Based on species sensitivity distributions, we determined Hazardous Concentrations for 5% of the species (HC5, with 95% CI) of 4.9 × 109 (6.6 × 107 - 1.9 × 1011) and 1.1 × 1010 (3.2 × 108 - 4.0 × 1011) particles / kg sediment dry weight, for food dilution and translocation, respectively. For all locations considered, exposure concentrations were either below or in the margin of uncertainty of the HC5 values. We conclude that risks from microplastics to benthic communities cannot be excluded at current concentrations in sediments worldwide.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Água Doce , Sedimentos Geológicos , Microplásticos/toxicidade , Plásticos/toxicidade , Medição de Risco , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
4.
Environ Sci Technol ; 54(19): 11692-11705, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32856914

RESUMO

In the literature, there is widespread consensus that methods in plastic research need improvement. Current limitations in quality assurance and harmonization prevent progress in our understanding of the true effects of microplastic in the environment. Following the recent development of quality assessment methods for studies reporting concentrations in biota and water samples, we propose a method to assess the quality of microplastic effect studies. We reviewed 105 microplastic effect studies with aquatic biota, provided a systematic overview of their characteristics, developed 20 quality criteria in four main criteria categories (particle characterization, experimental design, applicability in risk assessment, and ecological relevance), propose a protocol for future effect studies with particles, and, finally, used all the information to define the weight of evidence with respect to demonstrated effect mechanisms. On average, studies scored 44.6% (range 20-77.5%) of the maximum score. No study scored positively on all criteria, reconfirming the urgent need for better quality assurance. Most urgent recommendations for improvement relate to avoiding and verifying background contamination, and to improving the environmental relevance of exposure conditions. The majority of the studies (86.7%) evaluated on particle characteristics properly, nonetheless it should be underlined that by failing to provide characteristics of the particles, an entire experiment can become irreproducible. Studies addressed environmentally realistic polymer types fairly well; however, there was a mismatch between sizes tested and those targeted when analyzing microplastic in environmental samples. In far too many instances, studies suggest and speculate mechanisms that are poorly supported by the design and reporting of data in the study. This represents a problem for decision-makers and needs to be minimized in future research. In their papers, authors frame 10 effects mechanisms as "suggested", whereas 7 of them are framed as "demonstrated". When accounting for the quality of the studies according to our assessment, three of these mechanisms remained. These are inhibition of food assimilation and/or decreased nutritional value of food, internal physical damage, and external physical damage. We recommend that risk assessment addresses these mechanisms with higher priority.


Assuntos
Microplásticos , Plásticos , Biota , Monitoramento Ambiental , Medição de Risco
5.
Foods ; 9(1)2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936455

RESUMO

Microplastics (MPs) are considered an emerging issue as environmental pollutants and a potential health threat. This review will focus on recently published data on concentrations in food, possible effects, and monitoring methods. Some data are available on concentrations in seafood (fish, bivalves, and shrimps), water, sugar, salt, and honey, but are lacking for other foods. Bottled water is a considerable source with numbers varying between 2600 and 6300 MPs per liter. Particle size distributions have revealed an abundance of particles smaller than 25 µm, which are considered to have the highest probability to pass the intestinal border and to enter the systemic circulation of mammals. Some studies with mice and zebrafish with short- or medium-term exposure (up to 42 days) have revealed diverse results with respect to both the type and extent of effects. Most notable modifications have been observed in gut microbiota, lipid metabolism, and oxidative stress. The principal elements of MP monitoring in food are sample preparation, detection, and identification. Identified data gaps include a lack of occurrence data in plant- and animal-derived food, a need for more data on possible effects of different types of microplastics, a lack of in silico models, a lack of harmonized monitoring methods, and a further development of quality assurance.

6.
Glob Chall ; 4(6): 1800118, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35910491

RESUMO

Freshwater systems provide key pathways for microplastic (MP) pollution, and although existing studies have demonstrated the susceptibility of freshwater biota to ingestion, translocation, and trophic transfer, specific challenges pertaining to methodological standardization remain largely unresolved, particularly with respect to isolating, characterizing, and assessing MPs. Here, a critical review is performed outlining the challenges and limitations currently faced by freshwater MP researchers, which may well apply across the MP research spectrum. Recommendations are provided for methodological standardization, particularly in MP characterization, quality assurance, and quality control (QA/QC) procedures as well as reporting. Considerations for the assessment of MPs in freshwater biota as a means of improving comparisons between studies are discussed. Technological advancements, including the improvement of laboratory infrastructure for identifying MPs within the smaller size range as well as methodological standardization are essential in providing policy makers with tools and measures necessary to determine the distribution of MPs within freshwater ecosystems, while also allowing for comparability and providing compliance for future monitoring requirements.

7.
Water Res ; 155: 410-422, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30861380

RESUMO

Microplastics have recently been detected in drinking water as well as in drinking water sources. This presence has triggered discussions on possible implications for human health. However, there have been questions regarding the quality of these occurrence studies since there are no standard sampling, extraction and identification methods for microplastics. Accordingly, we assessed the quality of fifty studies researching microplastics in drinking water and in its major freshwater sources. This includes an assessment of microplastic occurrence data from river and lake water, groundwater, tap water and bottled drinking water. Studies of occurrence in wastewater were also reviewed. We review and propose best practices to sample, extract and detect microplastics and provide a quantitative quality assessment of studies reporting microplastic concentrations. Further, we summarize the findings related to microplastic concentrations, polymer types and particle shapes. Microplastics are frequently present in freshwaters and drinking water, and number concentrations spanned ten orders of magnitude (1 × 10-2 to 108 #/m3) across individual samples and water types. However, only four out of 50 studies received positive scores for all proposed quality criteria, implying there is a significant need to improve quality assurance of microplastic sampling and analysis in water samples. The order in globally detected polymers in these studies is PE ≈ PP > PS > PVC > PET, which probably reflects the global plastic demand and a higher tendency for PVC and PET to settle as a result of their higher densities. Fragments, fibres, film, foam and pellets were the most frequently reported shapes. We conclude that more high quality data is needed on the occurrence of microplastics in drinking water, to better understand potential exposure and to inform human health risk assessments.


Assuntos
Água Potável , Poluentes Químicos da Água , Confiabilidade dos Dados , Monitoramento Ambiental , Água Doce , Humanos , Plásticos
8.
Environ Pollut ; 242(Pt B): 1930-1938, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30061084

RESUMO

We performed an environmental risk assessment for microplastics (<5 mm) in the marine environment by estimating the order of magnitude of the past, present and future concentrations based on global plastic production data. In 2100, from 9.6 to 48.8 particles m-3 are predicted to float around in the ocean, which is a 50-fold increase compared to the present-day concentrations. From a meta-analysis with effect data available in literature, we derived a safe concentration of 6650 buoyant particles m-3 below which adverse effects are not likely to occur. Our risk assessment (excluding the potential role of microplastics as chemical vectors) suggests that on average, no direct effects of free-floating microplastics in the marine environment are to be expected up to the year 2100. Yet, even today, the safe concentration can be exceeded in sites that are heavily polluted with buoyant microplastics. In the marine benthic compartment between 32 and 144 particles kg-1 dry sediment are predicted to be present in the beach deposition zone. Despite the scarcity of effect data, we expect adverse ecological effects along the coast as of the second half of the 21st century. From then ambient concentrations will start to outrange the safe concentration of sedimented microplastics (i.e. 540 particles kg-1 sediment). Additional ecotoxicological research in which marine species are chronically exposed to realistic environmental microplastic concentration series are urgently needed to verify our findings.


Assuntos
Monitoramento Ambiental , Modelos Químicos , Plásticos/análise , Poluentes Químicos da Água/análise , Poluição Química da Água/estatística & dados numéricos , Poluição Ambiental/análise , Oceanos e Mares , Medição de Risco
9.
Environ Toxicol Chem ; 37(3): 690-702, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29068498

RESUMO

A framework is presented that is intended to facilitate the evaluation of potential aquatic ecological risks resulting from discharges of down-the-drain chemicals. A scenario is presented using representatives of many of the types of chemicals that are treated domestically. Predicted environmental chemical concentrations are based on reported loading rates and routine removal rates for 3 types of treatment: trickling filter, activated sludge secondary treatment, and activated sludge plus advanced oxidation process as well as instream effluent dilution. In tier I, predicted effluent concentrations were compared with the lowest predicted-no-effect concentration (PNEC) obtained from the literature using safety factors as needed. A cumulative risk characterization ratio (cumRCR) < 1.0 indicates that risk is unlikely and no further action is needed. Otherwise, a tier 2 assessment is used, in which PNECs are based on trophic level. If tier 2 indicates a possible risk, then a retrospective assessment is recommended. In tier 1, the cumRCR was > 1.0 for all 3 treatment types in our scenario, even though no chemical exceeded a hazard quotient of 1.0 in activated sludge or advanced oxidation process. In tier 2, activated sludge yielded a lower cumRCR than trickling filter because of higher removal rates, and the cumRCR in the advanced oxidation process was << 1.0. Based on the maximum cumulative risk ratio (MCR), more than one-third of the predicted risk was accounted for by one chemical, and at least 90% was accounted for by 3 chemicals, indicating that few chemicals influenced the mixture risk in our scenario. We show how a retrospective assessment can test whether certain chemicals hypothesized as potential drivers in the prospective assessment could have, or are having, deleterious effects on aquatic life. Environ Toxicol Chem 2018;37:690-702. © 2017 The Authors. Environmental Toxicology and Chemistry Published by Wiley Periodicals, Inc. on behalf of SETAC.


Assuntos
Medição de Risco/métodos , Águas Residuárias/química , Poluentes Químicos da Água/toxicidade , Purificação da Água , Árvores de Decisões , Ecotoxicologia , Monitoramento Ambiental , Estudos Prospectivos , Estudos Retrospectivos , Esgotos/química , Poluentes Químicos da Água/análise
10.
Water Res ; 127: 249-257, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29059612

RESUMO

Quantifying the transport of plastic debris from river to sea is crucial for assessing the risks of plastic debris to human health and the environment. We present a global modelling approach to analyse the composition and quantity of point-source microplastic fluxes from European rivers to the sea. The model accounts for different types and sources of microplastics entering river systems via point sources. We combine information on these sources with information on sewage management and plastic retention during river transport for the largest European rivers. Sources of microplastics include personal care products, laundry, household dust and tyre and road wear particles (TRWP). Most of the modelled microplastics exported by rivers to seas are synthetic polymers from TRWP (42%) and plastic-based textiles abraded during laundry (29%). Smaller sources are synthetic polymers and plastic fibres in household dust (19%) and microbeads in personal care products (10%). Microplastic export differs largely among European rivers, as a result of differences in socio-economic development and technological status of sewage treatment facilities. About two-thirds of the microplastics modelled in this study flow into the Mediterranean and Black Sea. This can be explained by the relatively low microplastic removal efficiency of sewage treatment plants in the river basins draining into these two seas. Sewage treatment is generally more efficient in river basins draining into the North Sea, the Baltic Sea and the Atlantic Ocean. We use our model to explore future trends up to the year 2050. Our scenarios indicate that in the future river export of microplastics may increase in some river basins, but decrease in others. Remarkably, for many basins we calculate a reduction in river export of microplastics from point-sources, mainly due to an anticipated improvement in sewage treatment.


Assuntos
Modelos Teóricos , Plásticos/análise , Rios , Poluentes Químicos da Água/análise , Oceano Atlântico , Monitoramento Ambiental , Europa (Continente) , Humanos , Mar Mediterrâneo , Mar do Norte , Oceanos e Mares , Esgotos , Resíduos
11.
Rev Environ Contam Toxicol ; 239: 1-77, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-26684744

RESUMO

A broadly accepted framework for prospective environmental risk assessment (ERA) of sediment-bound organic chemicals is currently lacking. Such a framework requires clear protection goals, evidence-based concepts that link exposure to effects and a transparent tiered-effect assessment. In this paper, we provide a tiered prospective sediment ERA procedure for organic chemicals in sediment, with a focus on the applicable European regulations and the underlying data requirements. Using the ecosystem services concept, we derived specific protection goals for ecosystem service providing units: microorganisms, benthic algae, sediment-rooted macrophytes, benthic invertebrates and benthic vertebrates. Triggers for sediment toxicity testing are discussed.We recommend a tiered approach (Tier 0 through Tier 3). Tier-0 is a cost-effective screening based on chronic water-exposure toxicity data for pelagic species and equilibrium partitioning. Tier-1 is based on spiked sediment laboratory toxicity tests with standard benthic test species and standardised test methods. If comparable chronic toxicity data for both standard and additional benthic test species are available, the Species Sensitivity Distribution (SSD) approach is a more viable Tier-2 option than the geometric mean approach. This paper includes criteria for accepting results of sediment-spiked single species toxicity tests in prospective ERA, and for the application of the SSD approach. We propose micro/mesocosm experiments with spiked sediment, to study colonisation success by benthic organisms, as a Tier-3 option. Ecological effect models can be used to supplement the experimental tiers. A strategy for unifying information from various tiers by experimental work and exposure-and effect modelling is provided.


Assuntos
Sedimentos Geológicos/química , Compostos Orgânicos/toxicidade , Medição de Risco , Poluentes Químicos da Água/toxicidade , Animais , Ecossistema , Estudos Prospectivos
12.
Environ Sci Technol ; 50(19): 10335-10342, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27574864

RESUMO

The assessment of chemical degradation rates from water-sediment experiments like for instance OECD 308 is challenging due to parallel occurrence of processes like degradation, sorption and diffusive transport, at different rates in water and sediment or at their interface. To systematically and quantitatively analyze this limitation, we generated artificial experiment data sets using model simulations and then used these data sets in an inverse modeling exercise to estimate degradation half-lives in water and sediment (DegT50wat and DegT50sed), which then were evaluated against their true values. Results were visualized by chemical space diagrams that identified those substance property combinations for which the OECD 308 test is fundamentally inappropriate. We show that the uncertainty in estimated degradation half-lives in water increases as the process of diffusion to the sediment becomes dominant over degradation in the water. We show that in theory the uncertainty in the estimated DegT50sed is smaller than the uncertainty in the DegT50wat. The predictive value of our chemical space diagrams was validated using literature transformation rates and their uncertainties that were inferred from real water-sediment experiments.


Assuntos
Sedimentos Geológicos/química , Água/química , Modelos Teóricos , Organização para a Cooperação e Desenvolvimento Econômico , Poluentes Químicos da Água
13.
Environ Sci Technol ; 49(22): 13586-95, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26466173

RESUMO

Whole sediment toxicity tests play an important role in environmental risk assessment of organic chemicals. It is not clear, however, to what extent changing microbial community composition and associated functions affect sediment test results. We assessed the development of bacterial communities in artificial sediment during a 28 day bioaccumulation test with polychlorinated biphenyls, chlorpyrifos, and four marine benthic invertebrates. DGGE and 454-pyrosequencing of PCR-amplified 16S rRNA genes were used to characterize bacterial community composition. Abundance of total bacteria and selected genes encoding enzymes involved in important microbially mediated ecosystem functions were measured by qPCR. Community composition and diversity responded most to the time course of the experiment, whereas organic matter (OM) content showed a low but significant effect on community composition, biodiversity and two functional genes tested. Moreover, OM content had a higher influence on bacterial community composition than invertebrate species. Medium OM content led to the highest gene abundance and is preferred for standard testing. Our results also indicated that a pre-equilibration period is essential for growth and stabilization of the bacterial community. The observed changes in microbial community composition and functional gene abundance may imply actual changes in such functions during tests, with consequences for exposure and toxicity assessment.


Assuntos
Bactérias/genética , Ecotoxicologia/métodos , Sedimentos Geológicos/microbiologia , Consórcios Microbianos/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Biodiversidade , Clorpirifos/farmacocinética , Clorpirifos/toxicidade , Ecossistema , Invertebrados/classificação , Invertebrados/fisiologia , Bifenilos Policlorados/farmacocinética , Bifenilos Policlorados/toxicidade , Reação em Cadeia da Polimerase/métodos , RNA Ribossômico 16S/genética , Poluentes Químicos da Água/farmacocinética
15.
Sci Total Environ ; 406(3): 503-17, 2008 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-18757078

RESUMO

Many Dutch ecosystems, whether terrestrial, aquatic or sediment-based, are diffusely polluted by mixtures of contaminants, whose concentrations often exceed regulatory Safe Values or other generic quality criteria. This situation has unclear consequences, especially when local authorities are confronted with such pollution. Water managers are frequently in doubt whether their water systems satisfy the criteria for 'Good Ecological Status' as defined in the EU's Water Framework Directive. In case of soils, soil users may wonder whether the soil is 'fit for use'. In case of nature conservation, the problem is that protected species might suffer from toxic stress. Official regulations in these cases call for appropriate action, but it is unclear whether the diffuse exposure causes adverse effects, and what the action should be. This paper proposes and discusses a site-oriented approach in the risk assessment of diffusely contaminated sites that can be used in addition to the compound-oriented policies from which the abovementioned generic quality criteria were derived. The site-oriented approach can be of help in reducing site-specific risks of diffuse contamination. Reflecting on the results of a large Dutch research effort in systems-oriented ecotoxicological effects, the conclusion is drawn that exposure and effects of diffuse pollution are site-specific in kind and magnitude, determined by the local combination of source-pathway-receptor issues, and often not clearly detectable (though often present). To assist in risk management, higher-tier methods can address various aspects, like addressing local mixture composition, bioavailability, and sensitivity of local species groups. Higher-tier risk assessment methods have as yet been developed mainly for cases of serious contamination, like for pesticide management and Risk-Based Land Management. For diffuse pollution, site-specific information can also be used to obtain site-specific exposure and impact information, while practical and ecology-based approaches can be introduced to obtain an integrated overview of the meaning of site contamination and to derive options for managing and reducing the local risks. These issues are discussed against the background of current major policy shifts, in The Netherlands and elsewhere, from a pollutant-oriented assessment to an additional ecological and site-oriented assessment. The latter is most clearly represented in the Good Ecological Status aim of the EU-Water Framework Directive. The paper assesses, integrates and discusses the results of the Dutch research effort in this policy context.


Assuntos
Tomada de Decisões Gerenciais , Ecologia , Poluentes Ambientais , Meio Ambiente , Países Baixos , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA