Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Acta Biomater ; 140: 275-288, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34826641

RESUMO

In vitro Construction of the liver sinusoidal structure using artificial tissue is an important but worthwhile challenge, particularly for assessing the risk of diseases such as sinusoidal obstruction syndrome (SOS). Current models are unsuitable for evaluating the toxicity because of lacking sinusoidal capillary. In this study, we developed a vascularized hepatic tissue (VHT) using a unique tissue engineering technique, the cell assembled viscous tissue by sedimentation (CAViTs) method. The "viscous bodies" created using the CAViTs method exhibited significant self-assembly within 6 h after seeding, promoting cell-cell interaction. The level of albumin secreted by the VHT was four times higher than that of 2D-coculture and maintained for 1 month. The gene expression pattern of the VHT was closer to that of total human liver, compared with the 2D system. Quantitative evaluations of the vascular structure of VHT treated with two typical SOS-inducing compounds, monocrotaline and retrorsine, revealed higher sensitivity (IC50 = 40.35 µM), 19.92 times higher than the cell-viability assay. Thus, VHT represents an innovative in vitro model that mimics the vessel network structure and could become a useful tool for the early screening of compounds associated with a risk of vascular toxicity. STATEMENT OF SIGNIFICANCE: Mimicking sinusoidal structures in in vitro liver model is important to consider from the perspective of predicting hepatotoxicity such like sinusoidal obstruction syndrome (SOS). However, it was difficult to reconstruct the vascular structure within the hepatocyte-rich environment. In this study, we constructed a vascularized hepatic tissue in a high-throughput manner by a unique method using collagen and heparin, and evaluated its applicability to toxicity assessment. Vessel morphology analysis of the model treated by monocrotaline, which is a well-known SOS-inducing compound, could predict the toxicity with higher sensitivity. To the best of our knowledge, this is the first report to provide vascularized hepatic tissues using sinusoidal endothelial cells at least for demonstrating applicability to the evaluation of SOS induction risk.


Assuntos
Células Endoteliais , Hepatopatia Veno-Oclusiva , Células Endoteliais/metabolismo , Hepatopatia Veno-Oclusiva/diagnóstico , Hepatopatia Veno-Oclusiva/metabolismo , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo
2.
J Pharmacol Toxicol Methods ; 105: 106893, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32619502

RESUMO

INTRODUCTION: Drug-induced inotropic change is a risk factor in drug development; thus, de-risking is desired in the early stages of drug development. Unlike proarrhythmic risk assessment using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), few in vitro models were validated to predict cardiac contractility. Motion field imaging (MFI), a high-resolution block matching-based optical flow technique, was expected to possess high quantitative predictivity in the detection of contraction speed. We aimed to establish an in vitro model to assess drug-induced contractile changes using hiPSC-CMs and MFI. METHODS: MFI was designed to noninvasively characterize cardiomyocyte contractile behavior by analyzing light microscope video images, and maximum contraction speed (MCS) was used as the index of contractility. Using MFI, 9 inactive compounds, 10 negative inotropes, and 10 positive inotropes were tested. Two negative chronotropes, ZD7288 and ivabradine, were also tested. To determine the sensitivity and specificity of the assay, the minimum effective concentration of the MCS was compared with the human effective total therapeutic concentration for 28 compounds in clinical use. RESULTS: For 8 negative and 8 positive inotropes, the effects observed in in vivo and clinical studies were detected in MFI assay. MFI assay showed negative chronotropic changes without inotropic changes. MFI assay presented sufficient specificity (83%) and sensitivity (88%), and RNA-sequence analysis provided an insight into the relationship between occurrence of the false compounds and target gene expression. DISCUSSION: We demonstrated the utility of MFI assay using hiPSC-CMs to assess drug-induced contractile function. These results will facilitate the de-risking of compounds during early drug development.


Assuntos
Cardiotônicos/efeitos adversos , Cardiotoxicidade/diagnóstico , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Células Cultivadas , Expressão Gênica/efeitos dos fármacos , Humanos , Fatores de Risco , Sensibilidade e Especificidade , Gravação em Vídeo/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA