Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Plants ; 10(6): 901-909, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38740944

RESUMO

Carbon influences the evolution and functioning of plants and their roots. Previous work examining a small number of commonly measured root traits has revealed a global multidimensionality of the resource economics traits in fine roots considering carbon as primary currency but without considering the diversity of carbon-related traits. To address this knowledge gap, we use data from 66 tree species from a tropical forest to illustrate that root economics space co-varies with a novel molecular-level traits space based on nuclear magnetic resonance. Thinner fine roots exhibit higher proportions of carbohydrates and lower diversity of molecular carbon than thicker roots. Mass-denser fine roots have more lignin and aromatic carbon compounds but less bioactive carbon compounds than lighter roots. Thus, the transition from thin to thick fine roots implies a shift in the root carbon economy from 'do-it-yourself' soil exploration to collaboration with mycorrhizal fungi, while the shift from light to dense fine roots emphasizes a shift from acquisitive to conservative root strategy. We reveal a previously undocumented role of molecular-level carbon traits that potentially undergird the multidimensional root economics space. This finding offers new molecular insight into the diversity of root form and function, which is fundamental to our understanding of plant evolution, species coexistence and adaptations to heterogeneous environments.


Assuntos
Carbono , Raízes de Plantas , Árvores , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Carbono/metabolismo , Árvores/metabolismo , Florestas
2.
New Phytol ; 243(2): 580-590, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38488228

RESUMO

Non-structural carbohydrates (NSCs), as the labile fraction and dominant carbon currency, are essential mediators of plant adaptation to environments. However, whether and how NSC coordinates with plant economic strategy frameworks, particularly the well-recognized leaf economics spectrums (LES) and root economics space (RES), remains unclear. We examined the relationships between NSC and key plant economics traits in leaves and fine roots across 90 alpine coniferous populations on the Tibetan Plateau, China. We observed contrasting coordination of NSC with economics traits in leaves and roots. Leaf total NSC and soluble sugar aligned with the leaf economic spectrum, conveying a trade-off between growth and storage in leaves. However, NSC in roots was independent of the root economic spectrum, but highly coordinated with root foraging, with more starch and less sugar in forage-efficient, thinner roots. Further, NSC-trait coordination in leaves and roots was, respectively, driven by local temperature and precipitation. These findings highlight distinct roles of NSC in shaping the above- and belowground multidimensional economics trait space, and NSC-based carbon economics provides a mechanistic understanding of how plants adapt to heterogeneous habitats and respond to environmental changes.


Assuntos
Florestas , Folhas de Planta , Raízes de Plantas , Traqueófitas , Folhas de Planta/fisiologia , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Traqueófitas/fisiologia , Metabolismo dos Carboidratos , Carboidratos , Característica Quantitativa Herdável , Temperatura
3.
Plant Divers ; 45(3): 309-314, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37397598

RESUMO

Independence among leaf economics, leaf hydraulics and leaf size confers plants great capability in adapting to heterogeneous environments. However, it remains unclear whether the independence of the leaf traits revealed across species still holds within species, especially under stressed conditions. Here, a suite of traits in these dimensions were measured in leaves and roots of a typical mangrove species, Ceriops tagal, which grows in habitats with a similar sunny and hot environment but different soil salinity in southern China. Compared with C. tagal under low soil salinity, C. tagal under high soil salinity had lower photosynthetic capacity, as indicated directly by a lower leaf nitrogen concentration and higher water use efficiency, and indirectly by a higher investment in defense function and thinner palisade tissue; had lower water transport capacity, as evidenced by thinner leaf minor veins and thinner root vessels; and also had much smaller single leaf area. Leaf economics, hydraulics and leaf size of the mangrove species appear to be coordinated as one trait dimension, which likely stemmed from co-variation of soil water and nutrient availability along the salinity gradient. The intraspecific leaf trait relationship under a stressful environment is insightful for our understanding of plant adaption to the multifarious environments.

5.
Nat Commun ; 10(1): 2203, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101818

RESUMO

The root economics spectrum (RES), a common hypothesis postulating a tradeoff between resource acquisition and conservation traits, is being challenged by conflicting relationships between root diameter, tissue density (RTD) and root nitrogen concentration (RN). Here, we analyze a global trait dataset of absorptive roots for over 800 plant species. For woody species (but not for non-woody species), we find nonlinear relationships between root diameter and RTD and RN, which stem from the allometric relationship between stele and cortical tissues. These nonlinear relationships explain how sampling bias from different ends of the nonlinear curves can result in conflicting trait relationships. Further, the shape of the relationships varies depending on evolutionary context and mycorrhizal affiliation. Importantly, the observed nonlinear trait relationships do not support the RES predictions. Allometry-based nonlinearity of root trait relationships improves our understanding of the ecology, physiology and evolution of absorptive roots.


Assuntos
Evolução Biológica , Raízes de Plantas/genética , Plantas/genética , Característica Quantitativa Herdável , Conjuntos de Dados como Assunto , Dinâmica não Linear , Fenótipo , Filogenia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo , Plantas/anatomia & histologia , Plantas/metabolismo
6.
Ecol Lett ; 18(9): 899-906, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26108338

RESUMO

Leaf economics and hydraulic traits are critical to leaf photosynthesis, yet it is debated whether these two sets of traits vary in a fully coordinated manner or there is room for independent variation. Here, we tested the relationship between leaf economics traits, including leaf nitrogen concentration and leaf dry mass per area, and leaf hydraulic traits including stomatal density and vein density in five tropical-subtropical forests. Surprisingly, these two suites of traits were statistically decoupled. This decoupling suggests that independent trait dimensions exist within a leaf, with leaf economics dimension corresponding to light capture and tissue longevity, and the hydraulic dimension to water-use and leaf temperature maintenance. Clearly, leaf economics and hydraulic traits can vary independently, thus allowing for more possible plant trait combinations. Compared with a single trait dimension, multiple trait dimensions may better enable species adaptations to multifarious niche dimensions, promote diverse plant strategies and facilitate species coexistence.


Assuntos
Florestas , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Transpiração Vegetal , China , Magnoliopsida/fisiologia , Nitrogênio/química , Fotossíntese , Filogenia , Folhas de Planta/anatomia & histologia , Clima Tropical , Água/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA