Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Med Biol ; 69(5)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38271728

RESUMO

Objective. This study aims to develop and assess a tumor contraction model, enhancing the precision of ablative margin (AM) evaluation after microwave ablation (MWA) treatment for hepatocellular carcinomas (HCCs).Approach. We utilize a probabilistic method called the coherent point drift algorithm to align pre-and post-ablation MRI images. Subsequently, a nonlinear regression method quantifies local tumor contraction induced by MWA, utilizing data from 47 HCC with viable ablated tumors in post-ablation MRI. After automatic non-rigid registration, correction for tumor contraction involves contracting the 3D contour of the warped tumor towards its center in all orientations.Main results. We evaluate the performance of our proposed method on 30 HCC patients who underwent MWA. The Dice similarity coefficient between the post-ablation liver and the warped pre-ablation livers is found to be 0.95 ± 0.01, with a mean corresponding distance between the corresponding landmarks measured at 3.25 ± 0.62 mm. Additionally, we conduct a comparative analysis of clinical outcomes assessed through MRI over a 3 month follow-up period, noting that the AM, as evaluated by our proposed method, accurately detects residual tumor after MWA.Significance. Our proposed method showcases a high level of accuracy in MRI liver registration and AM assessment following ablation treatment. It introduces a potentially approach for predicting incomplete ablations and gauging treatment success.


Assuntos
Carcinoma Hepatocelular , Ablação por Cateter , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/cirurgia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Micro-Ondas/uso terapêutico , Ablação por Cateter/métodos , Tomografia Computadorizada por Raios X/métodos , Resultado do Tratamento , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos
2.
Diagnostics (Basel) ; 13(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37296689

RESUMO

Human skeletal development is continuous and staged, and different stages have various morphological characteristics. Therefore, bone age assessment (BAA) can accurately reflect the individual's growth and development level and maturity. Clinical BAA is time consuming, highly subjective, and lacks consistency. Deep learning has made considerable progress in BAA in recent years by effectively extracting deep features. Most studies use neural networks to extract global information from input images. However, clinical radiologists are highly concerned about the ossification degree in some specific regions of the hand bones. This paper proposes a two-stage convolutional transformer network to improve the accuracy of BAA. Combined with object detection and transformer, the first stage mimics the bone age reading process of the pediatrician, extracts the hand bone region of interest (ROI) in real time using YOLOv5, and proposes hand bone posture alignment. In addition, the previous information encoding of biological sex is integrated into the feature map to replace the position token in the transformer. The second stage extracts features within the ROI by window attention, interacts between different ROIs by shifting the window attention to extract hidden feature information, and penalizes the evaluation results using a hybrid loss function to ensure its stability and accuracy. The proposed method is evaluated on the data from the Pediatric Bone Age Challenge organized by the Radiological Society of North America (RSNA). The experimental results show that the proposed method achieves a mean absolute error (MAE) of 6.22 and 4.585 months on the validation and testing sets, respectively, and the cumulative accuracy within 6 and 12 months reach 71% and 96%, respectively, which is comparable to the state of the art, markedly reducing the clinical workload and realizing rapid, automatic, and high-precision assessment.

3.
Diagnostics (Basel) ; 13(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36980478

RESUMO

Voxel-wise quantitative assessment of typical characteristics in three-dimensional (3D) multiphase computed tomography (CT) imaging, especially arterial phase hyperenhancement (APHE) and subsequent washout (WO), is crucial for the diagnosis and therapy of hepatocellular carcinoma (HCC). However, this process is still missing in practice. Radiologists often visually estimate these features, which limit the diagnostic accuracy due to subjective interpretation and qualitative assessment. Quantitative assessment is one of the solutions to this problem. However, performing voxel-wise assessment in 3D is difficult due to the misalignments between images caused by respiratory and other physiological motions. In this paper, based on the Liver Imaging Reporting and Data System (v2018), we propose a registration-based quantitative model for the 3D voxel-wise assessment of image characteristics through multiple CT imaging phases. Specifically, we selected three phases from sequential CT imaging phases, i.e., pre-contrast phase (Pre), arterial phase (AP), delayed phase (DP), and then registered Pre and DP images to the AP image to extract and assess the major imaging characteristics. An iterative reweighted local cross-correlation was applied in the proposed registration model to construct the fidelity term for comparison of intensity features across different imaging phases, which is challenging due to their distinct intensity appearance. Experiments on clinical dataset showed that the means of dice similarity coefficient of liver were 98.6% and 98.1%, those of surface distance were 0.38 and 0.54 mm, and those of Hausdorff distance were 4.34 and 6.16 mm, indicating that quantitative estimation can be accomplished with high accuracy. For the classification of APHE, the result obtained by our method was consistent with those acquired by experts. For the WO, the effectiveness of the model was verified in terms of WO volume ratio.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA