Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Phys Med Biol ; 55(23): 7067-80, 2010 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-21076189

RESUMO

The purpose of this study was to compare the predicted risks of second malignant neoplasm (SMN) incidence and mortality from secondary neutrons for a 9-year-old girl and a 10-year-old boy who received proton craniospinal irradiation (CSI). SMN incidence and mortality from neutrons were predicted from equivalent doses to radiosensitive organs for cranial, spinal and intracranial boost fields. Therapeutic proton absorbed dose and equivalent dose from neutrons were calculated using Monte Carlo simulations. Risks of SMN incidence and mortality in most organs and tissues were predicted by applying risks models from the National Research Council of the National Academies to the equivalent dose from neutrons; for non-melanoma skin cancer, risk models from the International Commission on Radiological Protection were applied. The lifetime absolute risks of SMN incidence due to neutrons were 14.8% and 8.5%, for the girl and boy, respectively. The risks of a fatal SMN were 5.3% and 3.4% for the girl and boy, respectively. The girl had a greater risk for any SMN except colon and liver cancers, indicating that the girl's higher risks were not attributable solely to greater susceptibility to breast cancer. Lung cancer predominated the risk of SMN mortality for both patients. This study suggests that the risks of SMN incidence and mortality from neutrons may be greater for girls than for boys treated with proton CSI.


Assuntos
Neoplasias do Sistema Nervoso Central/radioterapia , Modelos Biológicos , Neoplasias Induzidas por Radiação/etiologia , Nêutrons/efeitos adversos , Terapia com Prótons , Crânio/efeitos da radiação , Coluna Vertebral/efeitos da radiação , Criança , Feminino , Humanos , Masculino , Meduloblastoma/radioterapia , Método de Monte Carlo , Neoplasias Induzidas por Radiação/mortalidade , Tumores Neuroectodérmicos/radioterapia , Prótons/efeitos adversos , Dosagem Radioterapêutica , Risco , Fatores Sexuais
2.
Phys Med Biol ; 54(8): 2277-91, 2009 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19305036

RESUMO

The purpose of this work was to compare the risk of developing a second cancer after craniospinal irradiation using photon versus proton radiotherapy by means of simulation studies designed to account for the effects of neutron exposures. Craniospinal irradiation of a male phantom was calculated for passively-scattered and scanned-beam proton treatment units. Organ doses were estimated from treatment plans; for the proton treatments, the amount of stray radiation was calculated separately using the Monte Carlo method. The organ doses were converted to risk of cancer incidence using a standard formalism developed for radiation protection purposes. The total lifetime risk of second cancer due exclusively to stray radiation was 1.5% for the passively scattered treatment versus 0.8% for the scanned proton beam treatment. Taking into account the therapeutic and stray radiation fields, the risk of second cancer from intensity-modulated radiation therapy and conventional radiotherapy photon treatments were 7 and 12 times higher than the risk associated with scanned-beam proton therapy, respectively, and 6 and 11 times higher than with passively scattered proton therapy, respectively. Simulations revealed that both passively scattered and scanned-beam proton therapies confer significantly lower risks of second cancers than 6 MV conventional and intensity-modulated photon therapies.


Assuntos
Neoplasias Induzidas por Radiação/etiologia , Neoplasias Induzidas por Radiação/patologia , Terapia com Prótons , Radioterapia/efeitos adversos , Crânio/efeitos da radiação , Coluna Vertebral/efeitos da radiação , Exposição Ambiental , Humanos , Literatura Moderna , Magnetismo , Masculino , Método de Monte Carlo , Nêutrons/efeitos adversos , Radiometria , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/efeitos adversos , Risco , Espalhamento de Radiação
3.
Phys Med Biol ; 54(8): 2259-75, 2009 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19305045

RESUMO

Proton beam radiotherapy unavoidably exposes healthy tissue to stray radiation emanating from the treatment unit and secondary radiation produced within the patient. These exposures provide no known benefit and may increase a patient's risk of developing a radiogenic cancer. The aims of this study were to calculate doses to major organs and tissues and to estimate second cancer risk from stray radiation following craniospinal irradiation (CSI) with proton therapy. This was accomplished using detailed Monte Carlo simulations of a passive-scattering proton treatment unit and a voxelized phantom to represent the patient. Equivalent doses, effective dose and corresponding risk for developing a fatal second cancer were calculated for a 10-year-old boy who received proton therapy. The proton treatment comprised CSI at 30.6 Gy plus a boost of 23.4 Gy to the clinical target volume. The predicted effective dose from stray radiation was 418 mSv, of which 344 mSv was from neutrons originating outside the patient; the remaining 74 mSv was caused by neutrons originating within the patient. This effective dose corresponds to an attributable lifetime risk of a fatal second cancer of 3.4%. The equivalent doses that predominated the effective dose from stray radiation were in the lungs, stomach and colon. These results establish a baseline estimate of the stray radiation dose and corresponding risk for a pediatric patient undergoing proton CSI and support the suitability of passively-scattered proton beams for the treatment of central nervous system tumors in pediatric patients.


Assuntos
Neoplasias Induzidas por Radiação/etiologia , Terapia com Prótons , Doses de Radiação , Radioterapia/efeitos adversos , Espalhamento de Radiação , Crânio/efeitos da radiação , Coluna Vertebral/efeitos da radiação , Criança , Humanos , Masculino , Método de Monte Carlo , Neoplasias Induzidas por Radiação/mortalidade , Nêutrons/efeitos adversos , Dosagem Radioterapêutica , Risco , Sensibilidade e Especificidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA