Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
2.
J Virol ; 96(13): e0050922, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35699447

RESUMO

Cell-mediated immunity is critical for long-term protection against most viral infections, including coronaviruses. We studied 23 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-infected survivors over a 1-year post-symptom onset (PSO) interval by ex vivo cytokine enzyme-linked immunosorbent spot assay (ELISpot) assay. All subjects demonstrated SARS-CoV-2-specific gamma interferon (IFN-γ), interleukin 2 (IL-2), and granzyme B (GzmB) T cell responses at presentation, with greater frequencies in severe disease. Cytokines, mainly produced by CD4+ T cells, targeted all structural proteins (nucleocapsid, membrane, and spike) except envelope, with GzmB and IL-2 greater than IFN-γ. Mathematical modeling predicted that (i) cytokine responses peaked at 6 days for IFN-γ, 36 days for IL-2, and 7 days for GzmB, (ii) severe illness was associated with reduced IFN-γ and GzmB but increased IL-2 production rates, and (iii) males displayed greater production of IFN-γ, whereas females produced more GzmB. Ex vivo responses declined over time, with persistence of IL-2 in 86% and of IFN-γ and GzmB in 70% of subjects at a median of 336 days PSO. The average half-life of SARS-CoV-2-specific cytokine-producing cells was modeled to be 139 days (~4.6 months). Potent T cell proliferative responses persisted throughout observation, were CD4 dominant, and were capable of producing all 3 cytokines. Several immunodominant CD4 and CD8 epitopes identified in this study were shared by seasonal coronaviruses or SARS-CoV-1 in the nucleocapsid and membrane regions. Both SARS-CoV-2-specific CD4+ and CD8+ T cell clones were able to kill target cells, though CD8 tended to be more potent. IMPORTANCE Our findings highlight the relative importance of SARS-CoV-2-specific GzmB-producing T cell responses in SARS-CoV-2 control and shared CD4 and CD8 immunodominant epitopes in seasonal coronaviruses or SARS-CoV-1, and they indicate robust persistence of T cell memory at least 1 year after infection. Our findings should inform future strategies to induce T cell vaccines against SARS-CoV-2 and other coronaviruses.


Assuntos
COVID-19 , Citocinas , Imunidade , SARS-CoV-2 , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , COVID-19/imunologia , Vacinas contra COVID-19 , Citocinas/imunologia , Feminino , Humanos , Memória Imunológica , Interferon gama/metabolismo , Interleucina-2/imunologia , Masculino , Índice de Gravidade de Doença , Fatores de Tempo
3.
J Phys Chem B ; 125(25): 6857-6863, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34151560

RESUMO

We present here a model for multivalent diffusive transport whereby a central point-like hub is coupled to multiple feet, which bind to complementary sites on a two-dimensional landscape. The available number of binding interactions is dependent on the number of feet (multivalency) and on their allowed distance from the central hub (span). Using Monte Carlo simulations that implement the Gillespie algorithm, we simulate multivalent diffusive transport processes for 100 distinct walker designs. Informed by our simulation results, we derive an analytical expression for the diffusion coefficient of a general multivalent diffusive process as a function of multivalency, span, and dissociation constant Kd. Our findings can be used to guide the experimental design of multivalent transporters, in particular, providing insight into how to overcome trade-offs between diffusivity and processivity.


Assuntos
Algoritmos , Simulação por Computador , Difusão , Método de Monte Carlo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA