Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Clin Med ; 12(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37297962

RESUMO

Knowledge about anatomical shape variations in the pelvis is mandatory for selection, fitting, positioning, and fixation in pelvic surgery. The current knowledge on pelvic shape variation mostly relies on point-to-point measurements on 2D X-ray images and computed tomography (CT) slices. Three-dimensional region-specific assessments of pelvic morphology are scarce. Our aim was to develop a statistical shape model of the hemipelvis to assess anatomical shape variations in the hemipelvis. CT scans of 200 patients (100 male and 100 female) were used to obtain segmentations. An iterative closest point algorithm was performed to register these 3D segmentations, so a principal component analysis (PCA) could be performed, and a statistical shape model (SSM) of the hemipelvis was developed. The first 15 principal components (PCs) described 90% of the total shape variation, and the reconstruction ability of this SSM resulted in a root mean square error of 1.58 (95% CI: 1.53-1.63) mm. In summary, an SSM of the hemipelvis was developed, which describes the shape variations in a Caucasian population and is able to reconstruct an aberrant hemipelvis. Principal component analyses demonstrated that, in a general population, anatomical shape variations were mostly related to differences in the size of the pelvis (e.g., PC1 describes 68% of the total shape variation, which is attributed to size). Differences between the male and female pelvis were most pronounced in the iliac wing and pubic rami regions. These regions are often subject to injuries. Future clinical applications of our newly developed SSM may be relevant for SSM-based semi-automatic virtual reconstruction of a fractured hemipelvis as part of preoperative planning. Lastly, for companies, using our SSM might be interesting in order to assess which sizes of pelvic implants should be produced to provide proper-fitting implants for most of the population.

2.
Eur J Trauma Emerg Surg ; 49(2): 867-874, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36264307

RESUMO

PURPOSE: Currently used classification systems and measurement methods are insufficient to assess fracture displacement. In this study, a novel 3D measure for fracture displacement is introduced and associated with risk on conversion to total knee arthroplasty (TKA). METHODS: A multicenter cross-sectional study was performed including 997 patients treated for a tibial plateau fracture between 2003 and 2018. All patients were contacted for follow-up and 534 (54%) responded. For all patients, the 3D gap area was determined in order to quantify the degree of initial fracture displacement. A cut-off value was determined using ROC curves. Multivariate analysis was performed to assess the association of 3D gap area with conversion to TKA. Subgroups with increasing levels of 3D gap area were identified, and Kaplan-Meier survival curves were plotted to assess survivorship of the knee free from conversion to TKA. RESULTS: A total of 58 (11%) patients underwent conversation to TKA. An initial 3D gap area ≥ 550 mm2 was independently associated with conversion to TKA (HR 8.4; p = 0.001). Four prognostic groups with different ranges of the 3D gap area were identified: excellent (0-150 mm2), good (151-550 mm2), moderate (551-1000 mm2), and poor (> 1000 mm2). Native knee survival at 10-years follow-up was 96%, 95%, 76%, and 59%, respectively, in the excellent, good, moderate, and poor group. CONCLUSION: A novel 3D measurement method was developed to quantify initial fracture displacement of tibial plateau fractures. 3D fracture assessment adds to current classification methods, identifies patients at risk for conversion to TKA at follow-up, and could be used for patient counselling about prognosis. LEVEL OF EVIDENCE: Prognostic Level III.


Assuntos
Artroplastia do Joelho , Fraturas da Tíbia , Fraturas do Planalto Tibial , Humanos , Seguimentos , Estudos Transversais , Fraturas da Tíbia/diagnóstico por imagem , Fraturas da Tíbia/cirurgia , Resultado do Tratamento
3.
Oper Neurosurg (Hagerstown) ; 16(1): 94-102, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29660055

RESUMO

BACKGROUND: Accurate cervical screw insertion is of paramount importance considering the risk of damage to adjacent vital structures. Recent research in 3-dimensional (3D) technology describes the advantage of patient-specific drill guides for accurate screw positioning, but consensus about the optimal guide design and the accuracy is lacking. OBJECTIVE: To find the optimal design and to evaluate the accuracy of individualized 3D-printed drill guides for lateral mass and pedicle screw placement in the cervical and upper thoracic spine. METHODS: Five Thiel-embalmed human cadavers were used for individualized drill-guide planning of 86 screw trajectories in the cervical and upper thoracic spine. Using 3D bone models reconstructed from acquired computed tomography scans, the drill guides were produced for both pedicle and lateral mass screw trajectories. During the study, the initial minimalistic design was refined, resulting in the advanced guide design. Screw trajectories were drilled and the realized trajectories were compared to the planned trajectories using 3D deviation analysis. RESULTS: The overall entry point and 3D angular accuracy were 0.76 ± 0.52 mm and 3.22 ± 2.34°, respectively. Average measurements for the minimalistic guides were 1.20 mm for entry points, 5.61° for the 3D angulation, 2.38° for the 2D axial angulation, and 4.80° for the 2D sagittal angulation. For the advanced guides, the respective measurements were 0.66 mm, 2.72°, 1.26°, and 2.12°, respectively. CONCLUSION: The study ultimately resulted in an advanced guide design including caudally positioned hooks, crosslink support structure, and metal inlays. The novel advanced drill guide design yields excellent drilling accuracy.


Assuntos
Vértebras Cervicais/cirurgia , Parafusos Pediculares , Impressão Tridimensional , Cirurgia Assistida por Computador/métodos , Humanos , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA