Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Regul Toxicol Pharmacol ; 136: 105267, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36367522

RESUMO

Toxicology is moving away from animal testing towards in vitro tools to assess chemical safety. This new testing framework requires a quantitative method, i.e. kinetic modelling, which extrapolates effective concentrations in vitro to a bioequivalent human dose in vivo and which can be applied on "high throughput screening" of a wide variety of chemicals. Generic physiologically based kinetic (PBK) models help account for the role of toxicokinetics in setting human toxic exposure levels. Furthermore these models may be parameterized only on in silico QSARs and in vitro metabolism assays, thereby circumventing the use of in vivo toxicokinetics for this purpose. Though several such models exist their applicability domains have yet to be comprehensively assessed. This study extends previous evaluations of the PBK model IndusChemFate and compares it with its more complex biological complement ("TNO Model"). Both models were evaluated with a broad span of chemicals, varying regarding physicochemical properties. The results reveal that the "simpler" performed best, illustrating that IndusChemFate can be a useful first-tier for simulating toxicokinetics based on QSARs and in vitro parameters. Finally, proper quantitative in vitro to in vivo extrapolation conditions were illustrated starting with acetaminophen induced in vitro cytotoxicity in human HepaRG cells.


Assuntos
Modelos Biológicos , Relação Quantitativa Estrutura-Atividade , Animais , Humanos , Cinética , Toxicocinética , Medição de Risco/métodos
2.
Arch Toxicol ; 96(12): 3407-3419, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36063173

RESUMO

With an increasing need to incorporate new approach methodologies (NAMs) in chemical risk assessment and the concomitant need to phase out animal testing, the interpretation of in vitro assay readouts for quantitative hazard characterisation becomes more important. Physiologically based kinetic (PBK) models, which simulate the fate of chemicals in tissues of the body, play an essential role in extrapolating in vitro effect concentrations to in vivo bioequivalent exposures. As PBK-based testing approaches evolve, it will become essential to standardise PBK modelling approaches towards a consensus approach that can be used in quantitative in vitro-to-in vivo extrapolation (QIVIVE) studies for regulatory chemical risk assessment based on in vitro assays. Based on results of an ECETOC expert workshop, steps are recommended that can improve regulatory adoption: (1) define context and implementation, taking into consideration model complexity for building fit-for-purpose PBK models, (2) harmonise physiological input parameters and their distribution and define criteria for quality chemical-specific parameters, especially in the absence of in vivo data, (3) apply Good Modelling Practices (GMP) to achieve transparency and design a stepwise approach for PBK model development for risk assessors, (4) evaluate model predictions using alternatives to in vivo PK data including read-across approaches, (5) use case studies to facilitate discussions between modellers and regulators of chemical risk assessment. Proof-of-concepts of generic PBK modelling approaches are published in the scientific literature at an increasing rate. Working on the previously proposed steps is, therefore, needed to gain confidence in PBK modelling approaches for regulatory use.


Assuntos
Modelos Biológicos , Animais , Cinética , Medição de Risco/métodos
3.
Front Toxicol ; 4: 864441, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35516525

RESUMO

Application of adverse outcome pathways (AOP) and integration of quantitative in vitro to in vivo extrapolation (QIVIVE) may support the paradigm shift in toxicity testing to move from apical endpoints in test animals to more mechanism-based in vitro assays. Here, we developed an AOP of proximal tubule injury linking a molecular initiating event (MIE) to a cascade of key events (KEs) leading to lysosomal overload and ultimately to cell death. This AOP was used as a case study to adopt the AOP concept for systemic toxicity testing and risk assessment based on in vitro data. In this AOP, nephrotoxicity is thought to result from receptor-mediated endocytosis (MIE) of the chemical stressor, disturbance of lysosomal function (KE1), and lysosomal disruption (KE2) associated with release of reactive oxygen species and cytotoxic lysosomal enzymes that induce cell death (KE3). Based on this mechanistic framework, in vitro readouts reflecting each KE were identified. Utilizing polymyxin antibiotics as chemical stressors for this AOP, the dose-response for each in vitro endpoint was recorded in proximal tubule cells from rat (NRK-52E) and human (RPTEC/TERT1) in order to (1) experimentally support the sequence of key events (KEs), to (2) establish quantitative relationships between KEs as a basis for prediction of downstream KEs based on in vitro data reflecting early KEs and to (3) derive suitable in vitro points of departure for human risk assessment. Time-resolved analysis was used to support the temporal sequence of events within this AOP. Quantitative response-response relationships between KEs established from in vitro data on polymyxin B were successfully used to predict in vitro toxicity of other polymyxin derivatives. Finally, a physiologically based kinetic (PBK) model was utilized to transform in vitro effect concentrations to a human equivalent dose for polymyxin B. The predicted in vivo effective doses were in the range of therapeutic doses known to be associated with a risk for nephrotoxicity. Taken together, these data provide proof-of-concept for the feasibility of in vitro based risk assessment through integration of mechanistic endpoints and reverse toxicokinetic modelling.

4.
Sci Total Environ ; 830: 154795, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35341855

RESUMO

Amphibian populations are undergoing a global decline worldwide. Such decline has been attributed to their unique physiology, ecology, and exposure to multiple stressors including chemicals, temperature, and biological hazards such as fungi of the Batrachochytrium genus, viruses such as Ranavirus, and habitat reduction. There are limited toxicity data for chemicals available for amphibians and few quantitative structure-activity relationship (QSAR) models have been developed and are publicly available. Such QSARs provide important tools to assess the toxicity of chemicals particularly in a data poor context. QSARs provide important tools to assess the toxicity of chemicals particularly when no toxicological data are available. This manuscript provides a description and validation of a regression-based QSAR model to predict, in a quantitative manner, acute lethal toxicity of aromatic chemicals in tadpoles of the Japanese brown frog (Rana japonica). QSAR models for acute median lethal molar concentrations (LC50-12 h) of waterborne chemicals using the Monte Carlo method were developed. The statistical characteristics of the QSARs were described as average values obtained from five random distributions into training and validation sets. Predictions from the model gave satisfactory results for the overall training set (R2 = 0.72 and RMSE = 0.33) and were even more robust for the validation set (R2 = 0.96 and RMSE = 0.11). Further development of QSAR models in amphibians, particularly for other life stages and species, are discussed.


Assuntos
Relação Quantitativa Estrutura-Atividade , Ranidae , Animais , Calibragem , Larva , Medição de Risco
5.
Methods Mol Biol ; 2425: 589-636, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35188648

RESUMO

This chapter aims to introduce the reader to the basic principles of environmental risk assessment of chemicals and highlights the usefulness of tiered approaches within weight of evidence approaches in relation to problem formulation i.e., data availability, time and resource availability. In silico models are then introduced and include quantitative structure-activity relationship (QSAR) models, which support filling data gaps when no chemical property or ecotoxicological data are available. In addition, biologically-based models can be applied in more data rich situations and these include generic or species-specific models such as toxicokinetic-toxicodynamic models, dynamic energy budget models, physiologically based models, and models for ecosystem hazard assessment i.e. species sensitivity distributions and ultimately for landscape assessment i.e. landscape-based modeling approaches. Throughout this chapter, particular attention is given to provide practical examples supporting the application of such in silico models in real-world settings. Future perspectives are discussed to address environmental risk assessment in a more holistic manner particularly for relevant complex questions, such as the risk assessment of multiple stressors and the development of harmonized approaches to ultimately quantify the relative contribution and impact of single chemicals, multiple chemicals and multiple stressors on living organisms.


Assuntos
Ecossistema , Ecotoxicologia , Simulação por Computador , Relação Quantitativa Estrutura-Atividade , Medição de Risco
6.
ALTEX ; 37(4): 607-622, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32521035

RESUMO

For almost fifteen years, the availability and regulatory acceptance of new approach methodologies (NAMs) to assess the absorption, distribution, metabolism and excretion (ADME/biokinetics) in chemical risk evaluations are a bottleneck. To enhance the field, a team of 24 experts from science, industry, and regulatory bodies, including new generation toxicologists, met at the Lorentz Centre in Leiden, The Netherlands. A range of possibilities for the use of NAMs for biokinetics in risk evaluations were formulated (for example to define species differences and human variation or to perform quantitative in vitro-in vivo extrapolations). To increase the regulatory use and acceptance of NAMs for biokinetics for these ADME considerations within risk evaluations, the development of test guidelines (protocols) and of overarching guidance documents is considered a critical step. To this end, a need for an expert group on biokinetics within the Organisation of Economic Cooperation and Development (OECD) to supervise this process was formulated. The workshop discussions revealed that method development is still required, particularly to adequately capture transporter mediated processes as well as to obtain cell models that reflect the physiology and kinetic characteristics of relevant organs. Developments in the fields of stem cells, organoids and organ-on-a-chip models provide promising tools to meet these research needs in the future.


Assuntos
Alternativas aos Testes com Animais/métodos , Alternativas aos Testes com Animais/normas , Substâncias Perigosas/farmacocinética , Substâncias Perigosas/toxicidade , Animais , Humanos , Medição de Risco , Toxicologia/métodos , Toxicologia/normas
7.
Molecules ; 26(1)2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33383938

RESUMO

Carcinogenicity is a crucial endpoint for the safety assessment of chemicals and products. During the last few decades, the development of quantitative structure-activity relationship ((Q)SAR) models has gained importance for regulatory use, in combination with in vitro testing or expert-based reasoning. Several classification models can now predict both human and rat carcinogenicity, but there are few models to quantitatively assess carcinogenicity in humans. To our knowledge, slope factor (SF), a parameter describing carcinogenicity potential used especially for human risk assessment of contaminated sites, has never been modeled for both inhalation and oral exposures. In this study, we developed classification and regression models for inhalation and oral SFs using data from the Risk Assessment Information System (RAIS) and different machine learning approaches. The models performed well in classification, with accuracies for the external set of 0.76 and 0.74 for oral and inhalation exposure, respectively, and r2 values of 0.57 and 0.65 in the regression models for oral and inhalation SFs in external validation. These models might therefore support regulators in (de)prioritizing substances for regulatory action and in weighing evidence in the context of chemical safety assessments. Moreover, these models are implemented on the VEGA platform and are now freely downloadable online.


Assuntos
Carcinógenos/química , Carcinógenos/toxicidade , Neoplasias/induzido quimicamente , Administração Oral , Carcinógenos/administração & dosagem , Bases de Dados Factuais , Humanos , Exposição por Inalação/efeitos adversos , Aprendizado de Máquina , Relação Quantitativa Estrutura-Atividade , Análise de Regressão , Medição de Risco
8.
Environ Int ; 133(Pt B): 105256, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31683157

RESUMO

Bees are exposed to a wide range of multiple chemicals "chemical mixtures" from anthropogenic (e.g. plant protection products or veterinary products) or natural origin (e.g. mycotoxins, plant toxins). Quantifying the relative impact of multiple chemicals on bee health compared with other environmental stressors (e.g. varroa, viruses, and nutrition) has been identified as a priority to support the development of holistic risk assessment methods. Here, extensive literature searches and data collection of available laboratory studies on combined toxicity data for binary mixtures of pesticides and non-chemical stressors has been performed for honey bees (Apis mellifera), wild bees (Bombus spp.) and solitary bee species (Osmia spp.). From 957 screened publications, 14 publications provided 218 binary mixture toxicity data mostly for acute mortality (lethal dose: LD50) after contact exposure (61%), with fewer studies reporting chronic oral toxicity (20%) and acute oral LC50 values (19%). From the data collection, available dose response data for 92 binary mixtures were modelled using a Toxic Unit (TU) approach and the MIXTOX modelling tool to test assumptions of combined toxicity i.e. concentration addition (CA), and interactions (i.e. synergism, antagonism). The magnitude of interactions was quantified as the Model Deviation Ratio (MDR). The CA model applied to 17% of cases while synergism and antagonism were observed for 72% (MDR > 1.25) and 11% (MDR < 0.83) respectively. Most synergistic effects (55%) were observed as interactions between sterol-biosynthesis-inhibiting (SBI) fungicides and insecticide/acaricide. The mechanisms behind such synergistic effects of binary mixtures in bees are known to involve direct cytochrome P450 (CYP) inhibition, resulting in an increase in internal dose and toxicity of the binary mixture. Moreover, bees are known to have the lowest number of CYP copies and other detoxification enzymes in the insect kingdom. In the light of these findings, occurrence of these binary mixtures in relevant crops (frequency and concentrations) would need to be investigated. Addressing this exposure dimension remains critical to characterise the likelihood and plausibility of such interactions to occur under field realistic conditions. Finally, data gaps and further work for the development of risk assessment methods to assess multiple stressors in bees including chemicals and non-chemical stressors in bees are discussed.


Assuntos
Abelhas , Fungicidas Industriais/toxicidade , Praguicidas/toxicidade , Animais , Dose Letal Mediana , Medição de Risco
9.
ALTEX ; 36(2): 289-313, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30570669

RESUMO

Investigative Toxicology describes the de-risking and mechanistic elucidation of toxicities, supporting early safety decisions in the pharmaceutical industry. Recently, Investigative Toxicology has contributed to a shift in pharmaceutical toxicology, from a descriptive to an evidence-based, mechanistic discipline. This was triggered by high costs and low throughput of Good Laboratory Practice in vivo studies, and increasing demands for adhering to the 3R (Replacement, Reduction and Refinement) principles of animal welfare. Outside the boundaries of regulatory toxicology, Investigative Toxicology has the flexibility to embrace new technologies, enhancing translational steps from in silico, in vitro to in vivo mechanistic understanding to eventually predict human response. One major goal of Investigative Toxicology is improving preclinical decisions, which coincides with the concept of animal-free safety testing. Currently, compounds under preclinical development are being discarded due to the use of inappropriate animal models. Progress in Investigative Toxicology could lead to humanized in vitro test systems and the development of medicines less reliant on animal tests. To advance this field a group of 14 European-based leaders from the pharmaceutical industry founded the Investigative Toxicology Leaders Forum (ITLF), an open, non-exclusive and pre-competitive group that shares knowledge and experience. The ITLF collaborated with the Centre for Alternatives to Animal Testing Europe (CAAT-Europe) to organize an "Investigative Toxicology Think-Tank", which aimed to enhance the interaction with experts from academia and regulatory bodies in the field. Summarizing the topics and discussion of the workshop, this article highlights Investigative Toxicology's position by identifying key challenges and perspectives.


Assuntos
Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos/tendências , Toxicologia/tendências , Alternativas aos Testes com Animais , Animais , Simulação por Computador , Indústria Farmacêutica , Europa (Continente) , Humanos , Técnicas In Vitro , Medição de Risco
10.
Regul Toxicol Pharmacol ; 68(1): 119-39, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24287156

RESUMO

Information on toxicokinetics is critical for animal-free human risk assessment. Human external exposure must be translated into human tissue doses and compared with in vitro actual cell exposure associated to effects (in vitro-in vivo comparison). Data on absorption, distribution, metabolism and excretion in humans (ADME) could be generated using in vitro and QSAR tools. Physiologically-based toxicokinetic (PBTK) computer modelling could serve to integrate disparate in vitro and in silico findings. However, there are only few freely-available PBTK platforms currently available. And although some ADME parameters can be reasonably estimated in vitro or in silico, important gaps exist. Examples include unknown or limited applicability domains and lack of (high-throughput) tools to measure penetration of barriers, partitioning between blood and tissues and metabolic clearance. This paper is based on a joint EPAA--EURL ECVAM expert meeting. It provides a state-of-the-art overview of the availability of PBTK platforms as well as the in vitro and in silico methods to parameterise basic (Tier 1) PBTK models. Five high-priority issues are presented that provide the prerequisites for wider use of non-animal based PBTK modelling for animal-free chemical risk assessment.


Assuntos
Poluentes Ambientais/farmacocinética , Poluentes Ambientais/toxicidade , Modelos Biológicos , Alternativas aos Testes com Animais , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Exposição Ambiental/efeitos adversos , Humanos , Farmacocinética , Medição de Risco
11.
ALTEX ; 29(4): 411-25, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23138511

RESUMO

The role that in vitro systems can play in toxicological risk assessment is determined by the appropriateness of the chosen methods, with respect to the way in which in vitro data can be extrapolated to the in vivo situation. This report presents the results of a workshop aimed at better defining the use of in vitro-derived biomarkers of toxicity (BoT) and determining the place these data can have in human risk assessment. As a result, a conceptual framework is presented for the incorporation of in vitro-derived toxicity data into the risk assessment process. The selection of BoT takes into account that they need to distinguish adverse and adaptive changes in cells. The framework defines the place of in vitro systems in the context of data on exposure, structural and physico-chemical properties, and toxicodynamic and biokinetic modeling. It outlines the determination of a proper point-of-departure (PoD) for in vitro-in vivo extrapolation, allowing implementation in risk assessment procedures. A BoT will need to take into account both the dynamics and the kinetics of the compound in the in vitro systems. For the implementation of the proposed framework it will be necessary to collect and collate data from existing literature and new in vitro test systems, as well as to categorize biomarkers of toxicity and their relation to pathways-of-toxicity. Moreover, data selection and integration need to be driven by their usefulness in a quantitative in vitro-in vivo extrapolation (QIVIVE).


Assuntos
Biomarcadores/metabolismo , Substâncias Perigosas/toxicidade , Medição de Risco/métodos , Testes de Toxicidade/métodos , Testes de Toxicidade/normas , Alternativas aos Testes com Animais/métodos , Animais , Humanos
12.
Integr Environ Assess Manag ; 5(4): 577-97, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19775192

RESUMO

Mandated efforts to assess chemicals for their potential to bioaccumulate within the environment are increasingly moving into the realm of data inadequacy. Consequently, there is an increasing reliance on predictive tools to complete regulatory requirements in a timely and cost-effective manner. The kinetic processes of absorption, distribution, metabolism, and elimination (ADME) determine the extent to which chemicals accumulate in fish and other biota. Current mathematical models of bioaccumulation implicitly or explicitly consider these ADME processes, but there is a lack of data needed to specify critical model input parameters. This is particularly true for compounds that are metabolized, exhibit restricted diffusion across biological membranes, or do not partition simply to tissue lipid. Here we discuss the potential of in vitro test systems to provide needed data for bioaccumulation modeling efforts. Recent studies demonstrate the utility of these systems and provide a "proof of concept" for the prediction models. Computational methods that predict ADME processes from an evaluation of chemical structure are also described. Most regulatory agencies perform bioaccumulation assessments using a weight-of-evidence approach. A strategy is presented for incorporating predictive methods into this approach. To implement this strategy it is important to understand the "domain of applicability" of both in vitro and structure-based approaches, and the context in which they are applied.


Assuntos
Monitoramento Ambiental/métodos , Modelos Teóricos , Medição de Risco/métodos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Animais , Peixes , Cadeia Alimentar , Humanos , Relação Quantitativa Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA