Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Oncol ; 18(2): 245-279, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38135904

RESUMO

Analyses of inequalities related to prevention and cancer therapeutics/care show disparities between countries with different economic standing, and within countries with high Gross Domestic Product. The development of basic technological and biological research provides clinical and prevention opportunities that make their implementation into healthcare systems more complex, mainly due to the growth of Personalized/Precision Cancer Medicine (PCM). Initiatives like the USA-Cancer Moonshot and the EU-Mission on Cancer and Europe's Beating Cancer Plan are initiated to boost cancer prevention and therapeutics/care innovation and to mitigate present inequalities. The conference organized by the Pontifical Academy of Sciences in collaboration with the European Academy of Cancer Sciences discussed the inequality problem, dependent on the economic status of a country, the increasing demands for infrastructure supportive of innovative research and its implementation in healthcare and prevention programs. Establishing translational research defined as a coherent cancer research continuum is still a challenge. Research has to cover the entire continuum from basic to outcomes research for clinical and prevention modalities. Comprehensive Cancer Centres (CCCs) are of critical importance for integrating research innovations to preclinical and clinical research, as for ensuring state-of-the-art patient care within healthcare systems. International collaborative networks between CCCs are necessary to reach the critical mass of infrastructures and patients for PCM research, and for introducing prevention modalities and new treatments effectively. Outcomes and health economics research are required to assess the cost-effectiveness of new interventions, currently a missing element in the research portfolio. Data sharing and critical mass are essential for innovative research to develop PCM. Despite advances in cancer research, cancer incidence and prevalence is growing. Making cancer research infrastructures accessible for all patients, considering the increasing inequalities, requires science policy actions incentivizing research aimed at prevention and cancer therapeutics/care with an increased focus on patients' needs and cost-effective healthcare.


Assuntos
Neoplasias , Humanos , Cidade do Vaticano , Neoplasias/prevenção & controle , Pesquisa Translacional Biomédica , Atenção à Saúde , Medicina de Precisão
2.
Acta Oncol ; 61(7): 856-863, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35657056

RESUMO

PURPOSE: We tested the hypothesis that gene expressions from biopsies of locally advanced head and neck squamous cell carcinoma (HNSCC) patients can supplement dose-volume parameters to predict dysphagia and xerostomia following primary radiochemotherapy (RCTx). MATERIAL AND METHODS: A panel of 178 genes previously related to radiochemosensitivity of HNSCC was considered for nanoString analysis based on tumour biopsies of 90 patients with locally advanced HNSCC treated by primary RCTx. Dose-volume parameters were extracted from the parotid, submandibular glands, oral cavity, larynx, buccal mucosa, and lips. Normal tissue complication probability (NTCP) models were developed for acute, late, and for the improvement of xerostomia grade ≥2 and dysphagia grade ≥3 using a cross-validation-based least absolute shrinkage and selection operator (LASSO) approach combined with stepwise logistic regression for feature selection. The final signatures were included in a logistic regression model with optimism correction. Performance was assessed by the area under the receiver operating characteristic curve (AUC). RESULTS: NTCP models for acute and late xerostomia and the improvement of dysphagia resulted in optimism-corrected AUC values of 0.84, 0.76, and 0.70, respectively. The minimum dose to the contralateral parotid was selected for both acute and late xerostomia and the minimum dose to the larynx was selected for dysphagia improvement. For the xerostomia endpoints, the following gene expressions were selected: RPA2 (cellular response to DNA damage), TCF3 (salivary gland cells development), GBE1 (glycogen storage and regulation), and MAPK3 (regulation of cellular processes). No gene expression features were selected for the prediction of dysphagia. CONCLUSION: This hypothesis-generating study showed the potential of improving NTCP models using gene expression data for HNSCC patients. The presented models require independent validation before potential application in clinical practice.


Assuntos
Carcinoma de Células Escamosas , Transtornos de Deglutição , Neoplasias de Cabeça e Pescoço , Radioterapia de Intensidade Modulada , Xerostomia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/terapia , Quimiorradioterapia/efeitos adversos , Quimiorradioterapia/métodos , Transtornos de Deglutição/genética , Expressão Gênica , Neoplasias de Cabeça e Pescoço/complicações , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/terapia , Humanos , Glândula Parótida , Radioterapia de Intensidade Modulada/métodos , Carcinoma de Células Escamosas de Cabeça e Pescoço/complicações , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Xerostomia/genética
3.
Radiother Oncol ; 158: 262-267, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33667590

RESUMO

BACKGROUND: In preclinical radio-oncological research, local tumour control is considered the most relevant endpoint as it reflects the inactivation of cancer stem cells. Preclinical tumour-control assays may compare dose-response curves between different radiotherapy strategies, e.g., assessing additional targeted drugs and immunotherapeutic interventions, or between different radiation modalities. To mimic the biological heterogeneity of human tumour populations and to accommodate for approaches of personalized oncology, preclinical studies are increasingly performed combining larger panels of tumour models. For designing the study protocols and to obtain reliable results, prospective sample-size planning has to be developed that accounts for such heterogeneous cohorts. METHODS: A Monte-Carlo-based method was developed to estimate the sample size of a comparative 1:1 two-arm prospective tumour-control assay. Based on repeated logistic regression analysis, pre-defined dose levels, assumptions on the dose-response curves of the included tumour models and on the dose-modifying factors (DMF), the power is calculated for a given number of animals per dose group. RESULTS: Two applications are presented: (i) For a simple tumour-control assay with the head and neck squamous cell carcinoma (HNSCC) model FaDu, 10 animals would be required for each of 7 dose levels per arm to reveal a DMF of 1.25 with a power of 0.82 without drop out (total: 140 animals). (ii) In a more complex experiment combining six different lung tumour models to a heterogeneous population, 21 animals would be required for each of 11 dose levels per arm to reveal a DMF of 1.25 with a power of 0.81 without drop out (total: 462 animals). Analyzing the heterogeneous cohort reduces the required animal number by more than 50% compared to six individual tumour-control assays. CONCLUSION: An approach for estimating the required animal number for comparative tumour-control assays in a heterogeneous population is presented, allowing also the inclusion of different treatments as a personalized approach in the experimental arm. The software is publicly available and can be applied to plan comparisons of sigmoidal dose-response curves based on logistic regression.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Radioterapia (Especialidade) , Animais , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Método de Monte Carlo , Estudos Prospectivos , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia
4.
Radiother Oncol ; 146: 205-212, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32222488

RESUMO

BACKGROUND AND PURPOSE: Proton radiotherapy offers the potential to reduce normal tissue toxicity. However, clinical safety margins, range uncertainties, and varying relative biological effectiveness (RBE) may result in a critical dose in tumor-surrounding normal tissue. To assess potential adverse effects in preclinical studies, image-guided proton mouse brain irradiation and analysis of DNA damage repair was established. MATERIAL AND METHODS: We designed and characterized a setup to shape proton beams with 7 mm range in water and 3 mm in diameter and commissioned a Monte Carlo model for in vivo dose simulation. Cone-beam computed tomography and orthogonal X-ray imaging were used to delineate the right hippocampus and position the mice. The brains of three C3H/HeNRj mice were irradiated with 8 Gy and excised 30 min later. Initial DNA double-strand breaks were visualized by staining brain sections for cell nuclei and γH2AX. Imaged sections were analyzed with an automated and validated processing pipeline to provide a quantitative, spatially resolved radiation damage indicator. RESULTS: The analyzed DNA damage pattern clearly visualized the radiation effect in the mouse brains and could be mapped to the simulated dose distribution. The proton beam passed the right hippocampus and stopped in the central brain region for all evaluated mice. CONCLUSION: We established image-guided proton irradiation of mouse brains. The clinically oriented workflow facilitates (back-) translational studies. Geometric accuracy, detailed Monte Carlo dose simulations, and cell-based assessment enable a biologically and spatially resolved analysis of radiation response and RBE.


Assuntos
Terapia com Prótons , Animais , Encéfalo , Camundongos , Camundongos Endogâmicos C3H , Método de Monte Carlo , Prótons , Eficiência Biológica Relativa
5.
Acta Oncol ; 56(11): 1392-1398, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28849720

RESUMO

BACKGROUND: The relative biological effectiveness (RBE) of particle therapy compared to photon radiotherapy is known to be variable but the exact dependencies are still subject to debate. In vitro data suggested that RBE is to a large extend independent of ion type if parametrized by the beam quality Q. This study analyzed the RBE dependence of pre-clinical data on late toxicity with an emphasis on the beam quality. MATERIAL AND METHODS: Published pre-clinical RBE dose-response data of the spinal cord following one and two fractions of photon and carbon ion irradiation were compiled. The beam quality for each treatment condition was obtained from Monte Carlo simulations. The αp and ßp parameters of the linear-quadratic (LQ) model for particle irradiation were determined from the pre-clinical data and was provided as a function of Q. An introduced model proposed αp to increase linearly with Q and ßp to remain constant. RBE values predicted by the model were compared to the published data. RESULTS: The αp parameter was highly correlated with Q (R2 = 0.96) with a linear slope of 0.019 Gy-1. No significant variation of ßp with Q was found. RBE and Q were also highly correlated (R2 = 0.98) for one and two fractions. The (extrapolated) RBE at Q = 0 (theoretical photon limit) for one and two fractions was 1.22 and significantly larger than 1 (p = .004). The model reproduced the dependence of RBE on fractionation well. CONCLUSIONS: Fraction dose and beam quality Q were sufficient to describe the RBE variability for a late toxicity model within a carbon ion treatment field. Assuming the independence of the identified RBE parameters on the ion type might suggest the translation of variable (pre-) clinical RBE data from carbon ion to proton therapy.


Assuntos
Carbono/uso terapêutico , Radioterapia com Íons Pesados , Modelos Biológicos , Terapia com Prótons , Eficiência Biológica Relativa , Traumatismos da Medula Espinal/radioterapia , Animais , Relação Dose-Resposta à Radiação , Transferência Linear de Energia , Método de Monte Carlo , Ratos
6.
Radiother Oncol ; 123(2): 282-287, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28351523

RESUMO

BACKGROUND AND PURPOSE: To report on a Quality assessment (QA) of Skagen Trial 1, exploring hypofractionation for breast cancer patients with indication for regional nodal radiotherapy. MATERIAL AND METHODS: Deviations from protocol regarding target volume delineations and dose parameters (Dmin, Dmax, D98%, D95% and D2%) from randomly selected dose plans were assessed. Target volume delineation according to ESTRO guidelines was obtained through atlas based automated segmentation and centrally approved as gold standard (GS). Dice similarity scores (DSC) with original delineations were measured. Dose parameters measured in the two delineations were reported to assess their dosimetric outcome. RESULTS: Assessment included 88 plans from 12 centres in 4 countries. DSC showed high agreement in contouring, 99% and 96% of the patients had a complete delineation of target volumes and organs at risk. No deviations in the dosimetric outcome were found in 76% of the patients, 82% and 95% of the patients had successful coverage of breast/chestwall and CTVn_L2-4-interpectoral. Dosimetric outcomes of original delineation and GS were comparable. CONCLUSIONS: QA showed high protocol compliance and adequate dose coverage in most patients. Inter-observer variability in contouring was low. Dose parameters were in harmony with protocol regardless original or GS segmentation.


Assuntos
Neoplasias da Mama/radioterapia , Planejamento da Radioterapia Assistida por Computador/normas , Feminino , Humanos , Variações Dependentes do Observador , Órgãos em Risco , Dosagem Radioterapêutica
7.
Radiat Environ Biophys ; 54(2): 155-66, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25600561

RESUMO

The long-term goal to integrate laser-based particle accelerators into radiotherapy clinics not only requires technological development of high-intensity lasers and new techniques for beam detection and dose delivery, but also characterization of the biological consequences of this new particle beam quality, i.e. ultra-short, ultra-intense pulses. In the present work, we describe successful in vivo experiments with laser-driven electron pulses by utilization of a small tumour model on the mouse ear for the human squamous cell carcinoma model FaDu. The already established in vitro irradiation technology at the laser system JETI was further enhanced for 3D tumour irradiation in vivo in terms of beam transport, beam monitoring, dose delivery and dosimetry in order to precisely apply a prescribed dose to each tumour in full-scale radiobiological experiments. Tumour growth delay was determined after irradiation with doses of 3 and 6 Gy by laser-accelerated electrons. Reference irradiation was performed with continuous electron beams at a clinical linear accelerator in order to both validate the dedicated dosimetry employed for laser-accelerated JETI electrons and above all review the biological results. No significant difference in radiation-induced tumour growth delay was revealed for the two investigated electron beams. These data provide evidence that the ultra-high dose rate generated by laser acceleration does not impact the biological effectiveness of the particles.


Assuntos
Elétrons/uso terapêutico , Lasers , Aceleradores de Partículas , Radioterapia/instrumentação , Animais , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/radioterapia , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Transformação Celular Neoplásica , Relação Dose-Resposta à Radiação , Feminino , Humanos , Masculino , Camundongos , Radiometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA