Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Occup Environ Hyg ; 19(7): 425-436, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35583522

RESUMO

The funeral service profession has used formaldehyde-containing embalming solutions for the preparation of decedents since the early 1900s. The available literature regarding funeral director exposure to formaldehyde largely consists of data collected prior to 2000, with most studies reporting task-length exposure concentrations rather than full-shift time-weighted average concentrations. As formaldehyde undergoes review in the U.S. Environmental Protection Agency Toxic Substances Control Act (TSCA) risk evaluation process, accurately characterizing long-term exposure potential in this profession is critical. This study presents passive badge sampling and air change rate measurement results conducted at 13 funeral home locations across the United States. Full-shift (approximately 8-hr) samples were collected on one embalmer per day in each funeral home and on one occupational non-user (ONU), e.g., a receptionist. Additionally, task-length samples were collected during each embalming that occurred during the shift, were one to occur. Full-shift concentrations ranged from 0.007 to 1.1 ppm and 0.007 to 0.042 ppm for embalmers and ONUs, respectively. Task-length formaldehyde concentrations ranged from 0.058 to 1.4 ppm, with the average embalming taking 72.8 min to complete. Air change rates in the preparation rooms ranged from 2.8 to 28.3 air changes per hour; however, no correlation between task-length formaldehyde concentrations and air change rate was observed. Following empirical data collection, a Monte Carlo analysis of estimated annual 8-hr time-weighted average (TWA) exposure was conducted to determine the potential exposure distribution for embalmers employed at private funeral homes. Inputs to the simulation were derived from responses to a National Funeral Directors Association survey and from empirical measurements collected during the study. With respect to the reconstructed 8-hr TWAs, the median 8-hr TWA was 0.037 ppm, with 93.6% of the predicted concentrations below 0.1 ppm. This study provides a robust characterization of contemporary formaldehyde exposures in the funeral service profession. Further, it provides a strategy for interpreting the results along with surveyed responses regarding embalming frequency to better inform risks associated with formaldehyde exposure in this profession.


Assuntos
Embalsamamento , Exposição Ocupacional , Formaldeído/efeitos adversos , Formaldeído/análise , Funerárias , Exposição Ocupacional/análise , Hipersensibilidade Respiratória , Estados Unidos
2.
Toxicol Rep ; 9: 238-249, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198407

RESUMO

Recently, the U.S. House of Representatives reported on the presence of heavy metals in raw ingredients used in baby foods and in finished baby food products themselves. In light of these concerns, this study aimed to evaluate potential risks associated with the presence of heavy metals in baby food products. We analyzed 36 baby food samples representing four ingredient categories (fruit; leguminous vegetable; root vegetable; or grain) for arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb). We assessed the potential lifetime cancer and non-cancer health risks posed to infants and toddlers following daily consumption of these chemicals in each food type, based on established daily food-specific ingestion rates. Daily doses were compared against selected reference values and oral slope factors to determine non-cancer hazard indices (HIs) and lifetime cancer risks. Hazard indices indicated a potential for non-cancer risk (e.g., HIs > 1.0) under only a few exposure scenarios, including for As and Pb under selected product type and age/concentration assumptions. Increases in lifetime cancer risks for all analytes across the ingredient categories evaluated ranged from 3.75 × 10-5 to 5.54 × 10-5; cancer risks were primarily driven by As from grain products. Though a limited set of exposure scenarios indicated a potential for health risk, the exposure assumptions in this assessment were conservative, and the heavy metal concentrations we found in baby foods are similar to those observed in similar whole foods. Based on these findings and the limited scenarios under which risks were identified, this study indicates that an infant's typical intake of baby food is unlikely to pose health risks from heavy metals above accepted tolerable risk levels under most exposure scenarios.

3.
Sci Total Environ ; 533: 476-87, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26184905

RESUMO

Automobile tires require functional rubber additives including curing agents and antioxidants, which are potentially environmentally available from tire and road wear particles (TRWP) deposited in soil and sediment. A novel methodology was employed to evaluate the environmental fate of three commonly-used tire chemicals (N-cyclohexylbenzothiazole-2-sulfenamide (CBS), N-(1,3-dimethylbutyl)-N'-phenyl-1,4-phenylenediamine (6-PPD) and 1,3-diphenylguanidine (DPG)), using a road simulator, an artificial weathering chamber, column leaching tests, and OECD 308 sediment/water incubator studies. Environmental release factors were quantified for curing (f(C)), tire wear (f(W)), terrestrial weathering (f(S)), leaching from TRWP (f(L)), and environmental availability from TRWP (f(A)) by liquid chromatography-tandem mass spectroscopy (LC/MS/MS) analyses. Cumulative fractions representing total environmental availability (F(T)) and release to water (FR) were calculated for the tire chemicals and 13 transformation products. F(T) for CBS, DPG and 6-PPD inclusive of transformation products for an accelerated terrestrial aging time in soil of 0.1 years was 0.08, 0.1, and 0.06, respectively (equivalent to 6 to 10% of formulated mass). In contrast, a wider range of 5.5×10(-4) (6-PPD) to 0.06 (CBS) was observed for F(R) at an accelerated age of 0.1 years, reflecting the importance of hydrophobicity and solubility for determining the release to the water phase. Significant differences (p<0.05) in the weathering factor, f(S), were observed when chemicals were categorized by boiling point or hydrolysis rate constant. A significant difference in the leaching factor, f(L), and environmental availability factor, f(A), was also observed when chemicals were categorized by log K(ow). Our methodology should be useful for lifecycle analysis of other functional polymer chemicals.


Assuntos
Modelos Químicos , Compostos Orgânicos/análise , Polímeros/química , Poluentes da Água/análise , Sedimentos Geológicos/química , Organização para a Cooperação e Desenvolvimento Econômico , Material Particulado/análise , Espectrometria de Massas em Tandem , Água
4.
Ann Occup Hyg ; 59(9): 1122-34, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26209596

RESUMO

Current recommendations for nanomaterial-specific exposure assessment require adaptation in order to be applied to complicated manufacturing settings, where a variety of particle types may contribute to the potential exposure. The purpose of this work was to evaluate a method that would allow for exposure assessment of nanostructured materials by chemical composition and size in a mixed dust setting, using carbon black (CB) and amorphous silica (AS) from tire manufacturing as an example. This method combined air sampling with a low pressure cascade impactor with analysis of elemental composition by size to quantitatively assess potential exposures in the workplace. This method was first pilot-tested in one tire manufacturing facility; air samples were collected with a Dekati Low Pressure Impactor (DLPI) during mixing where either CB or AS were used as the primary filler. Air samples were analyzed via scanning transmission electron microscopy (STEM) coupled with energy dispersive spectroscopy (EDS) to identify what fraction of particles were CB, AS, or 'other'. From this pilot study, it was determined that ~95% of all nanoscale particles were identified as CB or AS. Subsequent samples were collected with the Dekati Electrical Low Pressure Impactor (ELPI) at two tire manufacturing facilities and analyzed using the same methodology to quantify exposure to these materials. This analysis confirmed that CB and AS were the predominant nanoscale particle types in the mixing area at both facilities. Air concentrations of CB and AS ranged from ~8900 to 77600 and 400 to 22200 particles cm(-3), respectively. This method offers the potential to provide quantitative estimates of worker exposure to nanoparticles of specific materials in a mixed dust environment. With pending development of occupational exposure limits for nanomaterials, this methodology will allow occupational health and safety practitioners to estimate worker exposures to specific materials, even in scenarios where many particle types are present.


Assuntos
Poluentes Ocupacionais do Ar/análise , Poeira/análise , Monitoramento Ambiental/métodos , Indústria Manufatureira , Nanopartículas/análise , Exposição Ocupacional/análise , Humanos , Exposição por Inalação/análise , Microscopia Eletrônica de Transmissão e Varredura , Saúde Ocupacional , Tamanho da Partícula , Projetos Piloto , Borracha/análise , Dióxido de Silício/análise , Fuligem/análise
5.
J Appl Toxicol ; 34(9): 939-67, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25080401

RESUMO

In this paper, quantitative methods were used to evaluate the weight of evidence regarding a causative relationship between cobalt-chromium (CoCr)-containing hip implants and increased cancer risk. We reviewed approximately 80 published papers and identified no-observed-adverse-effect level (NOAEL) and/or lowest-observed-adverse-effect level (LOAEL) values for specific endpoints of interest: genotoxic effects from in vitro studies with human cell lines as well as genotoxicity and tumor formation in animal bioassays. Test articles included Co particles and ions, Cr particles and ions, and CoCr alloy particles as well as CoCr alloy implants. The NOAEL/LOAEL values were compared with body burdens of Co/Cr particles and ions we calculated to exist in systemic tissues of hip implant patients under normal and excessive wear conditions. We found that approximately 40 tumor bioassays have been conducted with CoCr alloy implants or Co/Cr particles and ions at levels hundreds to thousands of times higher than those present in hip implant patients, and none reported a statistically significant increased incidence of systemic tumors. Results from in vitro and in vivo genotoxicity assays, which are relatively less informative owing to false positives and other factors, also indicated that DNA effects would be highly unlikely to occur as a result of wear debris from a CoCr implant. Hence, the toxicological weight of evidence suggests that CoCr-containing hip implants are unlikely to be associated with an increased risk of systemic cancers, which is consistent with published and ongoing cancer epidemiology studies involving patients with CoCr hip implants.


Assuntos
Ligas de Cromo/toxicidade , Cobalto/toxicidade , Dano ao DNA , Prótese de Quadril/efeitos adversos , Animais , Linhagem Celular Tumoral , Determinação de Ponto Final , Estudos de Avaliação como Assunto , Humanos , Neoplasias/induzido quimicamente , Neoplasias/patologia , Nível de Efeito Adverso não Observado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA