Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 357: 120700, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38565029

RESUMO

To protect human health, wildlife and the aquatic environment, "safe uses" of pesticides are determined at the EU level while product authorization and terms of use are established at the national level. In Sweden, extra precaution is taken to protect drinking water, and permits are therefore required for pesticide use within abstraction zones. This paper presents MACRO-DB, a tool for assessing pesticide contamination risks of groundwater and surface water, used by authorities to support their decision-making for issuing such permits. MACRO-DB is a meta-model based on 583,200 simulations of the physically-based MACRO model used for assessing pesticide leaching risks at EU and national level. MACRO-DB is simple to use and runs on widely available input data. In a qualitative comparative assessment for two counties in Sweden, MACRO-DB outputs were in general agreement with groundwater monitoring data and matched or were more protective than the national risk assessment procedure for groundwater.


Assuntos
Água Potável , Água Subterrânea , Praguicidas , Poluentes Químicos da Água , Humanos , Praguicidas/análise , Suécia , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Medição de Risco/métodos , Internet
2.
Sci Total Environ ; 637-638: 835-843, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29758438

RESUMO

Three passive sampler types including Chemcatcher® C18, polar organic chemical integrative sampler-hydrophilic-lipophilic balance (POCIS-HLB) and silicone rubber (SR) based on polydimethylsiloxane (PDMS) were evaluated for 124 legacy and current used pesticides at two sampling locations in southern Sweden over a period of 6 weeks and compared to time-proportional composite active sampling. In addition, an in situ calibration was performed resulting in median in situ sampling rates (RS, L day-1) of 0.01 for Chemcatcher® C18, 0.03 for POCIS-HLB, and 0.18 for SR, and median in situ passive sampler-water partition coefficients (log KPW, L kg-1) of 2.76 for Chemcatcher® C18, 3.87 for POCIS-HLB, and 2.64 for SR. Deisopropylatrazine D5 showed to be suitable as a performance reference compound (PRC) for SR. There was a good agreement between the pesticide concentrations using passive and active sampling. However, the three passive samplers detected 38 pesticides (including 9 priority substances from the EU Water Framework Directive (WFD) and 2 pyrethriods) which were not detected by the active sampler. The most frequently detected pesticides with a detection frequency of >90% for both sites were atrazine, 2,6-dichlorobenzamide, bentazone, chloridazon, isoproturon, and propiconazole. The annual average environmental quality standard (AA-EQS) for inland surface waters of the EU WFD and the risk quotient (RQ) of 1 was exceeded on a number of occasions indicating potential risk for the aquatic environment.


Assuntos
Monitoramento Ambiental/instrumentação , Praguicidas/análise , Poluentes Químicos da Água/análise , Calibragem , Monitoramento Ambiental/métodos , Medição de Risco , Suécia , Água
3.
Sci Total Environ ; 514: 239-49, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25666284

RESUMO

Climate change is not only likely to improve conditions for crop production in Sweden, but also to increase weed pressure and the need for herbicides. This study aimed at assessing and contrasting the direct and indirect effects of climate change on herbicide leaching to groundwater in a major crop production region in south-west Sweden with the help of the regional pesticide fate and transport model MACRO-SE. We simulated 37 out of the 41 herbicides that are currently approved for use in Sweden on eight major crop types for the 24 most common soil types in the region. The results were aggregated accounting for the fractional coverage of the crop and the area sprayed with a particular herbicide. For simulations of the future, we used projections of five different climate models as model driving data and assessed three different future scenarios: (A) only changes in climate, (B) changes in climate and land-use (altered crop distribution), and (C) changes in climate, land-use, and an increase in herbicide use. The model successfully distinguished between leachable and non-leachable compounds (88% correctly classified) in a qualitative comparison against regional-scale monitoring data. Leaching was dominated by only a few herbicides and crops under current climate and agronomic conditions. The model simulations suggest that the direct effects of an increase in temperature, which enhances degradation, and precipitation which promotes leaching, cancel each other at a regional scale, resulting in a slight decrease in leachate concentrations in a future climate. However, the area at risk of groundwater contamination doubled when indirect effects of changes in land-use and herbicide use, were considered. We therefore concluded that it is important to consider the indirect effects of climate change alongside the direct effects and that effective mitigation strategies and strict regulation are required to secure future (drinking) water resources.


Assuntos
Mudança Climática , Monitoramento Ambiental , Herbicidas/análise , Poluentes Químicos da Água/análise , Agricultura , Água Subterrânea/química , Modelos Químicos , Suécia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA