Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Part Fibre Toxicol ; 16(1): 19, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31014371

RESUMO

BACKGROUND: Particles and fibres affect human health as a function of their properties such as chemical composition, size and shape but also depending on complex interactions in an organism that occur at various levels between particle uptake and target organ responses. While particulate pollution is one of the leading contributors to the global burden of disease, particles are also increasingly used for medical purposes. Over the past decades we have gained considerable experience in how particle properties and particle-bio interactions are linked to human health. This insight is useful for improved risk management in the case of unwanted health effects but also for developing novel medical therapies. The concepts that help us better understand particles' and fibres' risks include the fate of particles in the body; exposure, dosimetry and dose-metrics and the 5 Bs: bioavailability, biopersistence, bioprocessing, biomodification and bioclearance of (nano)particles. This includes the role of the biomolecule corona, immunity and systemic responses, non-specific effects in the lungs and other body parts, particle effects and the developing body, and the link from the natural environment to human health. The importance of these different concepts for the human health risk depends not only on the properties of the particles and fibres, but is also strongly influenced by production, use and disposal scenarios. CONCLUSIONS: Lessons learned from the past can prove helpful for the future of the field, notably for understanding novel particles and fibres and for defining appropriate risk management and governance approaches.


Assuntos
Poluentes Atmosféricos/toxicidade , Exposição por Inalação/efeitos adversos , Fibras Minerais/toxicidade , Nanopartículas/toxicidade , Material Particulado/toxicidade , Poluentes Atmosféricos/química , Humanos , Nanopartículas/química , Tamanho da Partícula , Material Particulado/química , Medição de Risco , Gestão de Riscos , Propriedades de Superfície
2.
Artigo em Inglês | MEDLINE | ID: mdl-27030582

RESUMO

ENPRA was one of the earlier multidisciplinary European Commission FP7-funded projects aiming to evaluate the risks associated with nanomaterial (NM) exposure on human health across pulmonary, cardiovascular, hepatic, renal, and developmental systems. The outputs from this project have formed the basis of this review. A retrospective interpretation of the findings across a wide range of in vitro and in vivo studies was performed to identify the main highlights from the project. In particular, focus was placed on informing what advances were made in the hazard assessment of NM, as well as offering some suggestions on the future of "nanotoxicology research" based on these observations, shortcomings, and lessons learned from the project. A number of issues related to the hazard assessment of NM are discussed in detail and include use of appropriate NM for nanotoxicology investigations; characterization and dispersion of NM; use of appropriate doses for all related investigations; need for the correct choice of experimental models for risk assessment purposes; and full understanding of the test systems and correct interpretation of data generated from in vitro and in vivo systems. It is hoped that this review may assist in providing information in the implementation of guidelines, model systems, validation of assessment methodology, and integrated testing approaches for risk assessment of NM. It is vital to learn from ongoing and/or completed studies to avoid unnecessary duplication and offer suggestions that might improve different aspects of experimental design.


Assuntos
Nanoestruturas/toxicidade , Nanotecnologia/tendências , Testes de Toxicidade , Toxicologia/métodos , Animais , Europa (Continente) , Humanos , Técnicas In Vitro , Nanoestruturas/análise , Medição de Risco , Toxicologia/tendências
3.
Health Phys ; 108(2): 179-94, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25551501

RESUMO

The National Council on Radiation Protection and Measurements (NCRP) established NCRP Scientific Committee 2-6 to develop a report on the current state of knowledge and guidance for radiation safety programs involved with nanotechnology. Nanotechnology is the understanding and control of matter at the nanoscale, at dimensions between ∼1 and 100 nm, where unique phenomena enable novel applications. While the full report is in preparation, this paper presents and applies an informatics-based decision-making framework and process through which the radiation protection community can anticipate that nano-enabled applications, processes, nanomaterials, and nanoparticles are likely to become present or are already present in radiation-related activities; recognize specific situations where environmental and worker safety, health, well-being, and productivity may be affected by nano-related activities; evaluate how radiation protection practices may need to be altered to improve protection; control information, interpretations, assumptions, and conclusions to implement scientifically sound decisions and actions; and confirm that desired protection outcomes have been achieved. This generally applicable framework and supporting process can be continuously applied to achieve health and safety at the convergence of nanotechnology and radiation-related activities.


Assuntos
Tomada de Decisões , Técnicas de Apoio para a Decisão , Nanotecnologia/métodos , Proteção Radiológica/métodos , Medição de Risco/métodos , Conservação dos Recursos Naturais , Exposição Ambiental/prevenção & controle , Órgãos Governamentais , Humanos , Exposição Ocupacional , Segurança do Paciente , Radiação , Fatores de Tempo , Estados Unidos
4.
Int J Environ Res Public Health ; 11(4): 4026-48, 2014 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-24736686

RESUMO

In order to calculate the dose for nanoparticles (NP), (i) relevant information about the dose metrics and (ii) a proper dose concept are crucial. Since the appropriate metrics for NP toxicity are yet to be elaborated, a general dose calculation model for nanomaterials is not available. Here we propose how to develop a dose assessment model for NP in analogy to the radiation protection dose calculation, introducing the so-called "deposited and the equivalent dose". As a dose metric we propose the total deposited NP surface area (SA), which has been shown frequently to determine toxicological responses e.g. of lung tissue. The deposited NP dose is proportional to the total surface area of deposited NP per tissue mass, and takes into account primary and agglomerated NP. By using several weighting factors the equivalent dose additionally takes into account various physico-chemical properties of the NP which are influencing the biological responses. These weighting factors consider the specific surface area, the surface textures, the zeta-potential as a measure for surface charge, the particle morphology such as the shape and the length-to-diameter ratio (aspect ratio), the band gap energy levels of metal and metal oxide NP, and the particle dissolution rate. Furthermore, we discuss how these weighting factors influence the equivalent dose of the deposited NP.


Assuntos
Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/toxicidade , Modelos Biológicos , Óxidos/administração & dosagem , Óxidos/toxicidade , Relação Dose-Resposta a Droga , Exposição Ambiental , Humanos , Doses de Radiação , Radiação Ionizante , Medição de Risco
5.
Nanotoxicology ; 5(1): 1-11, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21417684

RESUMO

This paper presents the outcomes from a workshop of the European Network on the Health and Environmental Impact of Nanomaterials (NanoImpactNet). During the workshop, 45 experts in the field of safety assessment of engineered nanomaterials addressed the need to systematically study sets of engineered nanomaterials with specific metrics to generate a data set which would allow the establishment of dose-response relations. The group concluded that international cooperation and worldwide standardization of terminology, reference materials and protocols are needed to make progress in establishing lists of essential metrics. High quality data necessitates the development of harmonized study approaches and adequate reporting of data. Priority metrics can only be based on well-characterized dose-response relations derived from the systematic study of the bio-kinetics and bio-interactions of nanomaterials at both organism and (sub)-cellular levels. In addition, increased effort is needed to develop and validate analytical methods to determine these metrics in a complex matrix.


Assuntos
Substâncias Perigosas/toxicidade , Nanoestruturas/toxicidade , Conferências de Consenso como Assunto , Relação Dose-Resposta a Droga , Substâncias Perigosas/normas , Manufaturas/normas , Manufaturas/toxicidade , Nanoestruturas/química , Nanoestruturas/normas , Tamanho da Partícula , Medição de Risco , Propriedades de Superfície
6.
J Aerosol Med Pulm Drug Deliv ; 22(1): 45-54, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18844481

RESUMO

The dose of inhaled radiolabeled aerosols is usually assessed using gamma (GC) camera imaging. Because of the complex and inhomogeneous structure of the lung, consisting of soft tissue, the thoracic skeleton, blood vessels, and air spaces, proper attenuation correction coefficients are difficult to evaluate and the estimated doses bear high uncertainty. One hundred milliliters of aerosol boli composed of 100 nm diameter (99m)Tc radiolabeled carbon particles (Technegas) were targeted either to the airways (AW) or to 800-mL volumetric lung depth (alveoli, AL) in 11 healthy volunteers. In addition, 750-mL full breaths (FB) of aerosol were inhaled to a 800-mL lung depth. The deposited dose was measured by collecting aerosol from inhaled and exhaled air stream on filters, which were analyzed for radioactivity. Lung imaging was performed using a planar GC (posterior). Ratios of GC counts to deposited dose (GC/DD) were similar after FB and AL administration, but twofold lower after AW administration (p < 0.01). Associated attenuation correction factors (ACF) were 2.5 +/- 0.5 (FB), 2.2 +/- 0.4 (AL), and 5.5 +/- 1.6 (AW, p < 0.01). Both GC/DD and ACF were highly correlated to the aerosol distribution index (central to peripheral ratio, C/P). After shallow bolus administration there was a negative correlation between body mass index and GC/DD. Inhalation of radioaerosols used in medical diagnosis and therapy in combination with high central airway deposition results in an underestimation of the deposited dose based on planar GC imaging. The aerosol distribution index C/P may provide one suitable indicator for corrections, which should be confirmed in future studies by individual attenuation analysis based on radiotracer transmission measurements.


Assuntos
Aerossóis/metabolismo , Câmaras gama , Pulmão/metabolismo , Tecnécio , Adulto , Aerossóis/administração & dosagem , Idoso , Humanos , Pessoa de Meia-Idade , Distribuição Tecidual
7.
Circulation ; 106(8): 933-8, 2002 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-12186796

RESUMO

BACKGROUND: Daily variations in ambient particulate air pollution have been associated with cardiovascular mortality and morbidity. We therefore assessed the associations between levels of the 3 main modes of urban aerosol distribution and the occurrence of ST-segment depressions during repeated exercise tests. METHODS AND RESULTS: Repeated biweekly submaximal exercise tests were performed during 6 months among adult subjects with stable coronary heart disease in Helsinki, Finland. Seventy-two exercise-induced ST-segment depressions >0.1 mV occurred during 342 exercise tests among 45 subjects. Simultaneously, particle mass <2.5 microm (PM2.5) and the number concentrations of ultrafine particles (particle diameter 10 to 100 nm [NC(0.01-0.1)]) and accumulation mode particles (100 to 1000 nm [NC(0.1-1)]) were monitored at a central site. Levels of particulate air pollution 2 days before the clinic visit were significantly associated with increased risk of ST-segment depression during exercise test. The association was most consistent for measures of particles reflecting accumulation mode particles (odds ratio 3.29; 95% CI, 1.57 to 6.92 for NC(0.1-1) and 2.84; 95% CI, 1.42 to 5.66 for PM2.5), but ultrafine particles also had an effect (odds ratio 3.14; 95% CI, 1.56 to 6.32), which was independent of PM2.5. Also, gaseous pollutants NO2 and CO were associated with an increased risk for ST-segment depressions. No consistent association was observed for coarse particles. The associations tended to be stronger among subjects who did not use beta-blockers. CONCLUSIONS: The present results suggest that the effect of particulate air pollution on cardiovascular morbidity is at least partly mediated through increased susceptibility to myocardial ischemia.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Doença das Coronárias/diagnóstico , Isquemia Miocárdica/epidemiologia , Adulto , Idoso , Poluentes Atmosféricos/análise , Eletrocardiografia , Exposição Ambiental , Teste de Esforço , Feminino , Finlândia/epidemiologia , Humanos , Umidade , Masculino , Isquemia Miocárdica/diagnóstico , Isquemia Miocárdica/etiologia , Tamanho da Partícula , Medição de Risco , Fatores de Risco , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA