Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 13775, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35962007

RESUMO

Optical coherence tomography angiography (OCTA) is an emerging non-invasive technique for imaging the retinal vasculature. While there are many promising clinical applications for OCTA, determination of image quality remains a challenge. We developed a deep learning-based system using a ResNet152 neural network classifier, pretrained using ImageNet, to classify images of the superficial capillary plexus in 347 scans from 134 patients. Images were also manually graded by two independent graders as a ground truth for the supervised learning models. Because requirements for image quality may vary depending on the clinical or research setting, two models were trained-one to identify high-quality images and one to identify low-quality images. Our neural network models demonstrated outstanding area under the curve (AUC) metrics for both low quality image identification (AUC = 0.99, 95%CI 0.98-1.00, [Formula: see text] = 0.90) and high quality image identification (AUC = 0.97, 95%CI 0.96-0.99, [Formula: see text] = 0.81), significantly outperforming machine-reported signal strength (AUC = 0.82, 95%CI 0.77-0.86, [Formula: see text]= 0.52 and AUC = 0.78, 95%CI 0.73-0.83, [Formula: see text] = 0.27 respectively). Our study demonstrates that techniques from machine learning may be used to develop flexible and robust methods for quality control of OCTA images.


Assuntos
Aprendizado Profundo , Tomografia de Coerência Óptica , Angiofluoresceinografia/métodos , Humanos , Redes Neurais de Computação , Vasos Retinianos/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos
2.
Cell ; 174(3): 716-729.e27, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-29961576

RESUMO

Single-cell RNA sequencing technologies suffer from many sources of technical noise, including under-sampling of mRNA molecules, often termed "dropout," which can severely obscure important gene-gene relationships. To address this, we developed MAGIC (Markov affinity-based graph imputation of cells), a method that shares information across similar cells, via data diffusion, to denoise the cell count matrix and fill in missing transcripts. We validate MAGIC on several biological systems and find it effective at recovering gene-gene relationships and additional structures. Applied to the epithilial to mesenchymal transition, MAGIC reveals a phenotypic continuum, with the majority of cells residing in intermediate states that display stem-like signatures, and infers known and previously uncharacterized regulatory interactions, demonstrating that our approach can successfully uncover regulatory relations without perturbations.


Assuntos
Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Algoritmos , Linhagem Celular , Epistasia Genética/genética , Redes Reguladoras de Genes/genética , Humanos , Cadeias de Markov , MicroRNAs/genética , RNA Mensageiro/genética , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA