Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38076989

RESUMO

The mechanisms responsible for increased walking metabolic cost among older adults are poorly understood. We recently proposed a theoretical premise by which age-related reductions in Achilles tendon stiffness (k AT ) can disrupt the neuromechanics of calf muscle behavior and contribute to faster rates of oxygen consumption during walking. The purpose of this study was to objectively evaluate this premise. We quantified k AT at a range of matched activations prescribed using electromyographic biofeedback and walking metabolic cost in a group of 15 younger (age: 23±4 yrs) and 15 older adults (age: 72±5 yrs). Older adults averaged 44% less k AT than younger adults at matched triceps surae activations (p=0.046). This effect appeared to arise not only from altered tendon length-tension relations with age, but also from differences in the operating region of those length-tension relations between younger and older adults. Older adults also walked with a 17% higher net metabolic power than younger adults (p=0.017). In addition, we discovered empirical evidence that lesser k AT exacts a metabolic penalty and was positively correlated with higher net metabolic power during walking (r=-0.365, p=0.048). These results pave the way for interventions focused on restoring ankle muscle-tendon unit structural stiffness to improve walking energetics in aging.

2.
Mil Med ; 2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35803867

RESUMO

INTRODUCTION: Knee osteoarthritis (KOA) is a primary source of long-term disability and decreased quality of life (QoL) in service members (SM) with lower limb loss (LL); however, it remains difficult to preemptively identify and mitigate the progression of KOA and KOA-related symptoms. The objective of this study was to explore a comprehensive cross-sectional evaluation, at the baseline of a prospective study, for characterizing KOA in SM with traumatic LL. MATERIALS AND METHODS: Thirty-eight male SM with traumatic unilateral LL (23 transtibial and 15 transfemoral), 9.5 ± 5.9 years post-injury, were cross-sectionally evaluated at initial enrollment into a prospective, longitudinal study utilizing a comprehensive evaluation to characterize knee joint health, functionality, and QoL in SM with LL. Presences of medial, lateral, and/or patellofemoral articular degeneration within the contralateral knee were identified via magnetic resonance imaging(for medically eligible SM; Kellgren-Lawrence Grade [n = 32]; and Outerbridge classification [OC; n = 22]). Tri-planar trunk and pelvic motions, knee kinetics, along with temporospatial parameters, were quantified via full-body gait evaluation and inverse dynamics. Concentrations of 26 protein biomarkers of osteochondral tissue degradation and inflammatory activity were identified via serum immunoassays. Physical function, knee symptoms, and QoL were collected via several patient reported outcome measures. RESULTS: KOA was identified in 12 of 32 (37.5%; KL ≥ 1) SM with LL; however, 16 of 22 SM presented with patellofemoral degeneration (72.7%; OC ≥ 1). Service members with versus without KOA had a 26% reduction in the narrowest medial tibiofemoral joint space. Biomechanically, SM with versus without KOA walked with a 24% wider stride width and with a negative correlation between peak knee adduction moments and minimal medial tibiofemoral joint space. Physiologically, SM with versus without KOA exhibited elevated concentrations of pro-inflammatory biomarker interleukin-7 (+180%), collagen breakdown markers collagen II cleavage (+44%), and lower concentrations of hyaluronic acid (-73%) and bone resorption biomarker N-telopeptide of Type 1 Collagen (-49%). Lastly, there was a negative correlation between patient-reported contralateral knee pain severity and patient-reported functionality and QoL. CONCLUSIONS: While 37.5% of SM with LL had KOA at the tibiofemoral joint (KL ≥ 1), 72.7% of SM had the presence of patellofemoral degeneration (OC ≥ 1). These findings demonstrate that the patellofemoral joint may be more susceptible to degeneration than the medial tibiofemoral compartment following traumatic LL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA