Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Eur Urol ; 70(1): 45-53, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-25985884

RESUMO

BACKGROUND: TMPRSS2:ERG (T2:ERG) and prostate cancer antigen 3 (PCA3) are the most advanced urine-based prostate cancer (PCa) early detection biomarkers. OBJECTIVE: Validate logistic regression models, termed Mi-Prostate Score (MiPS), that incorporate serum prostate-specific antigen (PSA; or the multivariate Prostate Cancer Prevention Trial risk calculator version 1.0 [PCPTrc]) and urine T2:ERG and PCA3 scores for predicting PCa and high-grade PCa on biopsy. DESIGN, SETTING, AND PARTICIPANTS: T2:ERG and PCA3 scores were generated using clinical-grade transcription-mediated amplification assays. Pretrained MiPS models were applied to a validation cohort of whole urine samples prospectively collected after digital rectal examination from 1244 men presenting for biopsy. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Area under the curve (AUC) was used to compare the performance of serum PSA (or the PCPTrc) alone and MiPS models. Decision curve analysis (DCA) was used to assess clinical benefit. RESULTS AND LIMITATIONS: Among informative validation cohort samples (n=1225 [98%], 80% from patients presenting for initial biopsy), models incorporating T2:ERG had significantly greater AUC than PSA (or PCPTrc) for predicting PCa (PSA: 0.693 vs 0.585; PCPTrc: 0.718 vs 0.639; both p<0.001) or high-grade (Gleason score >6) PCa on biopsy (PSA: 0.729 vs 0.651, p<0.001; PCPTrc: 0.754 vs 0.707, p=0.006). MiPS models incorporating T2:ERG score had significantly greater AUC (all p<0.001) than models incorporating only PCA3 plus PSA (or PCPTrc or high-grade cancer PCPTrc [PCPThg]). DCA demonstrated net benefit of the MiPS_PCPTrc (or MiPS_PCPThg) model compared with the PCPTrc (or PCPThg) across relevant threshold probabilities. CONCLUSIONS: Incorporating urine T2:ERG and PCA3 scores improves the performance of serum PSA (or PCPTrc) for predicting PCa and high-grade PCa on biopsy. PATIENT SUMMARY: Incorporation of two prostate cancer (PCa)-specific biomarkers (TMPRSS2:ERG and PCA3) measured in the urine improved on serum prostate-specific antigen (or a multivariate risk calculator) for predicting the presence of PCa and high-grade PCa on biopsy. A combined test, Mi-Prostate Score, uses models validated in this study and is clinically available to provide individualized risk estimates.


Assuntos
Antígenos de Neoplasias/urina , Proteínas de Fusão Oncogênica/urina , Antígeno Prostático Específico/sangue , Próstata/patologia , Neoplasias da Próstata/patologia , Neoplasias da Próstata/urina , Idoso , Área Sob a Curva , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/urina , Biópsia , Humanos , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Valor Preditivo dos Testes , Neoplasias da Próstata/diagnóstico , Curva ROC , Medição de Risco/métodos
2.
Anal Cell Pathol (Amst) ; 35(4): 251-65, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22425661

RESUMO

INTRODUCTION: The advent of digital slides offers new opportunities within the practice of pathology such as the use of image analysis techniques to facilitate computer aided diagnosis (CAD) solutions. Use of CAD holds promise to enable new levels of decision support and allow for additional layers of quality assurance and consistency in rendered diagnoses. However, the development and testing of prostate cancer CAD solutions requires a ground truth map of the cancer to enable the generation of receiver operator characteristic (ROC) curves. This requires a pathologist to annotate, or paint, each of the malignant glands in prostate cancer with an image editor software - a time consuming and exhaustive process. Recently, two CAD algorithms have been described: probabilistic pairwise Markov models (PPMM) and spatially-invariant vector quantization (SIVQ). Briefly, SIVQ operates as a highly sensitive and specific pattern matching algorithm, making it optimal for the identification of any epithelial morphology, whereas PPMM operates as a highly sensitive detector of malignant perturbations in glandular lumenal architecture. METHODS: By recapitulating algorithmically how a pathologist reviews prostate tissue sections, we created an algorithmic cascade of PPMM and SIVQ algorithms as previously described by Doyle el al. [1] where PPMM identifies the glands with abnormal lumenal architecture, and this area is then screened by SIVQ to identify the epithelium. RESULTS: The performance of this algorithm cascade was assessed qualitatively (with the use of heatmaps) and quantitatively (with the use of ROC curves) and demonstrates greater performance in the identification of malignant prostatic epithelium. CONCLUSION: This ability to semi-autonomously paint nearly all the malignant epithelium of prostate cancer has immediate applications to future prostate cancer CAD development as a validated ground truth generator. In addition, such an approach has potential applications as a pre-screening/quality assurance tool.


Assuntos
Adenocarcinoma/diagnóstico , Algoritmos , Próstata/patologia , Neoplasias da Próstata/diagnóstico , Diagnóstico por Computador/métodos , Humanos , Masculino , Cadeias de Markov , Modelos Estatísticos , Reconhecimento Automatizado de Padrão/métodos , Curva ROC
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA