Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4439, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789428

RESUMO

Currently responsible for over one fifth of carbon emissions worldwide, the transportation sector will need to undergo a substantial technological transition to ensure compatibility with global climate goals. Few studies have modeled strategies to achieve zero emissions across all transportation modes, including aviation and shipping, alongside an integrated analysis of feedbacks on other sectors and environmental systems. Here, we use a global integrated assessment model to evaluate deep decarbonization scenarios for the transportation sector consistent with maintaining end-of-century warming below 1.5 °C, considering varied timelines for fossil fuel phase-out and implementation of advanced alternative technologies. We highlight the leading low carbon technologies for each transportation mode, finding that electrification contributes most to decarbonization across the sector. Biofuels and hydrogen are particularly important for aviation and shipping. Our most ambitious scenario eliminates transportation emissions by mid-century, contributing substantially to achieving climate targets but requiring rapid technological shifts with integrated impacts on fuel demands and availability and upstream energy transitions.

2.
Proc Natl Acad Sci U S A ; 112(34): 10635-40, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26240363

RESUMO

There is evidence that warming leads to greater evapotranspiration and surface drying, thus contributing to increasing intensity and duration of drought and implying that mitigation would reduce water stresses. However, understanding the overall impact of climate change mitigation on water resources requires accounting for the second part of the equation, i.e., the impact of mitigation-induced changes in water demands from human activities. By using integrated, high-resolution models of human and natural system processes to understand potential synergies and/or constraints within the climate-energy-water nexus, we show that in the United States, over the course of the 21st century and under one set of consistent socioeconomics, the reductions in water stress from slower rates of climate change resulting from emission mitigation are overwhelmed by the increased water stress from the emissions mitigation itself. The finding that the human dimension outpaces the benefits from mitigating climate change is contradictory to the general perception that climate change mitigation improves water conditions. This research shows the potential for unintended and negative consequences of climate change mitigation.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais/métodos , Política Pública , Abastecimento de Água , Previsões , Água Doce , Aquecimento Global , Água Subterrânea , Modelos Teóricos , Fatores Socioeconômicos , Estados Unidos , Ciclo Hidrológico
3.
Proc Natl Acad Sci U S A ; 111(9): 3274-9, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24344285

RESUMO

Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change's representative concentration pathway with end-of-century radiative forcing of 8.5 W/m(2). The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.


Assuntos
Agricultura/economia , Mudança Climática , Produtos Agrícolas/crescimento & desenvolvimento , Modelos Econômicos , Dióxido de Carbono/análise , Comércio/estatística & dados numéricos , Simulação por Computador , Previsões , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA