Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Am Soc Echocardiogr ; 36(5): 523-532.e3, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36632939

RESUMO

BACKGROUND: The lack of reliable echocardiographic techniques to assess diastolic function in children is a major clinical limitation. Our aim was to develop and validate the intraventricular pressure difference (IVPD) calculation using blood speckle-tracking (BST) and investigate the method's potential role in the assessment of diastolic function in children. METHODS: Blood speckle-tracking allows two-dimensional angle-independent blood flow velocity estimation. Blood speckle-tracking images of left ventricular (LV) inflow from the apical 4-chamber view in 138 controls, 10 patients with dilated cardiomyopathies (DCMs), and 21 patients with hypertrophic cardiomyopathies (HCMs) <18 years of age were analyzed to study LV IVPD during early diastole. Reproducibility of the IVPD analysis was assessed, IVPD estimates from BST and color M mode were compared, and the validity of the BST-based IVPD calculations was tested in a computer flow model. RESULTS: Mean IVPD was significantly higher in controls (-2.28 ± 0.62 mm Hg) compared with in DCM (-1.21 ± 0.39 mm Hg, P < .001) and HCM (-1.57 ± 0.47 mm Hg, P < .001) patients. Feasibility was 88.3% in controls, 80% in DCM patients, and 90.4% in HCM patients. The peak relative negative pressure occurred earlier at the apex than at the base and preceded the peak E-wave LV filling velocity, indicating that it represents diastolic suction. Intraclass correlation coefficients for intra- and interobserver variability were 0.908 and 0.702, respectively. There was a nonsignificant mean difference of 0.15 mm Hg between IVPD from BST and color M mode. Estimation from two-dimensional velocities revealed a difference in peak IVPD of 0.12 mm Hg (6.6%) when simulated in a three-dimensional fluid mechanics model. CONCLUSIONS: Intraventricular pressure difference calculation from BST is highly feasible and provides information on diastolic suction and early filling in children with heart disease. Intraventricular pressure difference was significantly reduced in children with DCM and HCM compared with controls, indicating reduced early diastolic suction in these patient groups.


Assuntos
Cardiomiopatia Dilatada , Cardiomiopatia Hipertrófica , Humanos , Criança , Pressão Ventricular/fisiologia , Volume Sistólico/fisiologia , Reprodutibilidade dos Testes , Ecocardiografia/métodos , Ventrículos do Coração/diagnóstico por imagem , Cardiomiopatia Hipertrófica/diagnóstico por imagem , Diástole/fisiologia , Função Ventricular Esquerda/fisiologia
2.
Med Phys ; 37(8): 4318-30, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20879592

RESUMO

PURPOSE: Ultrasound (US) is a commonly used vascular imaging tool when screening for patients at high cardiovascular risk. However, current blood flow and vessel wall imaging methods are hampered by several limitations. When optimizing and developing new ultrasound modalities, proper validation is required before clinical implementation. Therefore, the authors present a simulation environment integrating ultrasound and fluid-structure interaction (FSI) simulations, allowing construction of synthetic ultrasound images based on physiologically realistic behavior of an artery. To demonstrate the potential of the model for vascular ultrasound research, the authors studied clinically relevant imaging modalities of arterial function related to both vessel wall deformation and arterial hemodynamics: Arterial distension (related to arterial stiffness) and wall shear rate (related to the development of atherosclerosis) imaging. METHODS: An in-house code ("TANGO") was developed to strongly couple the flow solver FLUENT and structural solver ABAQUS using an interface quasi-Newton technique. FIELD II was used to model realistic transducer and scan settings. The input to the FSI-US model is a scatterer phantom on which the US waves reflect, with the scatterer displacement derived from the FSI flow and displacement fields. The authors applied the simulation tool to a 3D straight tube, representative of the common carotid artery (length: 5 cm; and inner and outer radius: 3 and 4 mm). A mass flow inlet boundary condition, based on flow measured in a healthy subject, was applied. A downstream pressure condition, based on a noninvasively measured pressure waveform, was chosen and scaled to simulate three different degrees of arterial distension (1%, 4%, and 9%). The RF data from the FSI-US coupling were further processed for arterial wall and flow imaging. Using an available wall tracking algorithm, arterial distensibility was assessed. Using an autocorrelation estimator, blood velocity and shear rate were obtained along a scanline. RESULTS: The authors obtained a very good agreement between the flow and the distension as obtained from the FSI-US model and the reference FSI values. The wall application showed a high sensitivity of distension measurements to the measurement location, previously reported based on in vivo data. Interestingly, the model indicated that strong reflections between tissue transitions can potentially cloud a correct measurement. The flow imaging application demonstrated that maximum shear rate was underestimated for a relevant simulation setup. Moreover, given the difficulty of measuring near-wall velocities with ultrasound, maximal shear rate was obtained at a distance from the wall [0.812 mm for the anterior and 0.689 mm for the posterior side (9% distension case)]. However, ultrasound shear rates correlated well with the FSI ground truth for all distension degrees, suggesting that correction of the severe underestimation by ultrasound might be feasible in certain flow conditions. CONCLUSIONS: The authors demonstrated a simulation environment to validate and develop ultrasonic vascular imaging. An elaborate technique to integrate FSI and FIELD II ultrasound simulations was presented. This multiphysics simulation tool was applied to two imaging applications where distensible ultrasound phantoms are indispensable: Wall distension and shear rate measurement. Results showed that the method to couple fluid-structure interaction and ultrasound simulations provides realistic RF signals from the tissue and the blood pool.


Assuntos
Algoritmos , Artérias/diagnóstico por imagem , Artérias/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Modelos Cardiovasculares , Ultrassonografia/métodos , Velocidade do Fluxo Sanguíneo/fisiologia , Fenômenos Fisiológicos Sanguíneos , Simulação por Computador , Módulo de Elasticidade/fisiologia , Humanos , Aumento da Imagem/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Resistência ao Cisalhamento/fisiologia
3.
Neurosurgery ; 65(6 Suppl): 149-57; discussion 157, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19934989

RESUMO

OBJECTIVE: The objective of this study was to investigate the clinical applicability of navigated blood flow imaging (BFI) in neurovascular applications. BFI is a new 2-dimensional ultrasound modality that offers angle-independent visualization of flow. When integrated with 3-dimensional (3D) navigation technology, BFI can be considered as a first step toward the ideal tool for surgical needs: a real-time, high-resolution, 3D visualization that properly portrays both vessel geometry and flow direction. METHODS: A 3D model of the vascular tree was extracted from preoperative magnetic resonance angiographic data and used as a reference for intraoperative any-plane guided ultrasound acquisitions. A high-end ultrasound scanner was interconnected, and synchronized recordings of BFI and 3D navigation scenes were acquired. The potential of BFI as an intraoperative tool for flow visualization was evaluated in 3 cerebral aneurysms and 3 arteriovenous malformations. RESULTS: The neurovascular flow direction was properly visualized in all cases using BFI. Navigation technology allowed for identification of the vessels of interest, despite the presence of brain shift. The surgeon found BFI to be very intuitive compared with conventional color Doppler methods. BFI allowed for quality control of sufficient flow in all distal arteries during aneurysm surgery and made it easier to discern between feeding arteries and draining veins during surgery for arteriovenous malformations. CONCLUSION: BFI seems to be a promising modality for neurovascular flow visualization that may provide the neurosurgeon with a valuable tool for safer surgical interventions. However, further work is needed to establish the clinical usefulness of the proposed imaging setup.


Assuntos
Artérias Cerebrais/diagnóstico por imagem , Artérias Cerebrais/cirurgia , Circulação Cerebrovascular/fisiologia , Monitorização Intraoperatória/métodos , Procedimentos Neurocirúrgicos/métodos , Ultrassonografia/métodos , Artérias Cerebrais/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/fisiopatologia , Aneurisma Intracraniano/cirurgia , Malformações Arteriovenosas Intracranianas/diagnóstico por imagem , Malformações Arteriovenosas Intracranianas/fisiopatologia , Malformações Arteriovenosas Intracranianas/cirurgia , Angiografia por Ressonância Magnética , Procedimentos Cirúrgicos Vasculares/métodos
4.
Ann Biomed Eng ; 37(11): 2188-99, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19669881

RESUMO

Ultrasonic Doppler techniques are well established and allow qualitative and quantitative flow analysis. However, due to inherent limitations of the imaging process, the actual flow dynamics and the ultrasound (US) image do not always correspond. To investigate the performance of ultrasonic flow imaging methods, computational fluid dynamics (CFD) can play an important role. CFD simulations can be directly processed to mimic ultrasonic images or can be further coupled to ultrasound simulation models. We studied both approaches in the clinically relevant setting of a carotid artery using color flow images (CFI). The first order approach consisted of producing ultrasound images by color-coding CFD-simulations. For the second order approach, CFI was simulated using an ultrasound simulator, which models blood as a collection of point scatterers moving according to the CFD velocity fields. Color flow images were also measured in an experimental setup of the same carotid geometry for comparison. Results showed that during dynamic stages of the cardiac cycle, realistic ultrasound data can only be achieved when incorporating both the dynamic image formation and the measurement statistics into the simulations.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/fisiologia , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Modelos Cardiovasculares , Ultrassonografia Doppler em Cores/métodos , Algoritmos , Simulação por Computador , Humanos , Aumento da Imagem/métodos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ultrassonografia Doppler em Cores/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA