Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Phys Med Biol ; 57(19): 6167-91, 2012 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-22971664

RESUMO

Neutron peripheral contamination in patients undergoing high-energy photon radiotherapy is considered as a risk factor for secondary cancer induction. Organ-specific neutron-equivalent dose estimation is therefore essential for a reasonable assessment of these associated risks. This work aimed to develop a method to estimate neutron-equivalent doses in multiple organs of radiotherapy patients. The method involved the convolution, at 16 reference points in an anthropomorphic phantom, of the normalized Monte Carlo neutron fluence energy spectra with the kerma and energy-dependent radiation weighting factor. This was then scaled with the total neutron fluence measured with passive detectors, at the same reference points, in order to obtain the equivalent doses in organs. The latter were correlated with the readings of a neutron digital detector located inside the treatment room during phantom irradiation. This digital detector, designed and developed by our group, integrates the thermal neutron fluence. The correlation model, applied to the digital detector readings during patient irradiation, enables the online estimation of neutron-equivalent doses in organs. The model takes into account the specific irradiation site, the field parameters (energy, field size, angle incidence, etc) and the installation (linac and bunker geometry). This method, which is suitable for routine clinical use, will help to systematically generate the dosimetric data essential for the improvement of current risk-estimation models.


Assuntos
Nêutrons/efeitos adversos , Sistemas On-Line , Órgãos em Risco/efeitos da radiação , Doses de Radiação , Radioterapia Assistida por Computador/efeitos adversos , Radioterapia Assistida por Computador/instrumentação , Aceleração , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Terapia com Prótons/efeitos adversos , Terapia com Prótons/instrumentação , Dosagem Radioterapêutica
2.
Phys Med Biol ; 48(14): 2081-99, 2003 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-12894972

RESUMO

Absolute dosimetry with ionization chambers of the narrow photon fields used in stereotactic techniques and IMRT beamlets is constrained by lack of electron equilibrium in the radiation field. It is questionable that stopping-power ratio in dosimetry protocols, obtained for broad photon beams and quasi-electron equilibrium conditions, can be used in the dosimetry of narrow fields while keeping the uncertainty at the same level as for the broad beams used in accelerator calibrations. Monte Carlo simulations have been performed for two 6 MV clinical accelerators (Elekta SL-18 and Siemens Mevatron Primus), equipped with radiosurgery applicators and MLC. Narrow circular and Z-shaped on-axis and off-axis fields, as well as broad IMRT configured beams, have been simulated together with reference 10 x 10 cm2 beams. Phase-space data have been used to generate 3D dose distributions which have been compared satisfactorily with experimental profiles (ion chamber, diodes and film). Photon and electron spectra at various depths in water have been calculated, followed by Spencer-Attix (delta = 10 keV) stopping-power ratio calculations which have been compared to those used in the IAEA TRS-398 code of practice. For water/air and PMMA/air stopping-power ratios, agreements within 0.1% have been obtained for the 10 x 10 cm2 fields. For radiosurgery applicators and narrow MLC beams, the calculated s(w,air) values agree with the reference within +/-0.3%, well within the estimated standard uncertainty of the reference stopping-power ratios (0.5%). Ionization chamber dosimetry of narrow beams at the photon qualities used in this work (6 MV) can therefore be based on stopping-power ratios data in dosimetry protocols. For a modulated 6 MV broad beam used in clinical IMRT, s(w,air) agrees within 0.1% with the value for 10 x 10 cm2, confirming that at low energies IMRT absolute dosimetry can also be based on data for open reference fields. At higher energies (24 MV) the difference in s(w,air) was up to 1.1%, indicating that the use of protocol data for narrow beams in such cases is less accurate than at low energies, and detailed calculations of the dosimetry parameters involved should be performed if similar accuracy to that of 6 MV is sought.


Assuntos
Algoritmos , Radiometria/instrumentação , Radiometria/métodos , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/instrumentação , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Conformacional/métodos , Método de Monte Carlo , Fótons/uso terapêutico , Radiocirurgia/instrumentação , Dosagem Radioterapêutica , Radioterapia Conformacional/instrumentação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA