Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Viruses ; 14(10)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36298643

RESUMO

Virus-like particles (VLPs) resemble authentic virus while not containing any genomic information. Here, we present a fast and powerful method for the production of SARS-CoV-2 VLP in insect cells and the application of these VLPs to evaluate the inhibition capacity of monoclonal antibodies and sera of vaccinated donors. Our method avoids the baculovirus-based approaches commonly used in insect cells by employing direct plasmid transfection to co-express SARS-CoV-2 envelope, membrane, and spike protein that self-assemble into VLPs. After optimization of the expression plasmids and vector ratios, VLPs with an ~145 nm diameter and the typical "Corona" aura were obtained, as confirmed by nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). Fusion of the membrane protein to GFP allowed direct quantification of binding inhibition to angiotensin II-converting enzyme 2 (ACE2) on cells by therapeutic antibody candidates or sera from vaccinated individuals. Neither VLP purification nor fluorescent labeling by secondary antibodies are required to perform these flow cytometric assays.


Assuntos
Baculoviridae , COVID-19 , Humanos , Animais , Baculoviridae/genética , SARS-CoV-2/genética , Enzima de Conversão de Angiotensina 2 , Glicoproteína da Espícula de Coronavírus/genética , Angiotensina II , Insetos , Anticorpos Monoclonais
2.
ACS Nano ; 11(12): 12121-12133, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29155560

RESUMO

Magnetic hyperthermia (MH) based on magnetic nanoparticles (MNPs) is a promising adjuvant therapy for cancer treatment. Particle clustering leading to complex magnetic interactions affects the heat generated by MNPs during MH. The heat efficiencies, theoretically predicted, are still poorly understood because of a lack of control of the fabrication of such clusters with defined geometries and thus their functionality. This study aims to correlate the heating efficiency under MH of individually coated iron oxide nanocubes (IONCs) versus soft colloidal nanoclusters made of small groupings of nanocubes arranged in different geometries. The controlled clustering of alkyl-stabilized IONCs is achieved here during the water transfer procedure by tuning the fraction of the amphiphilic copolymer, poly(styrene-co-maleic anhydride) cumene-terminated, to the nanoparticle surface. It is found that increasing the polymer-to-nanoparticle surface ratio leads to the formation of increasingly large nanoclusters with defined geometries. When compared to the individual nanocubes, we show here that controlled grouping of nanoparticles-so-called "dimers" and "trimers" composed of two and three nanocubes, respectively-increases specific absorption rate (SAR) values, while conversely, forming centrosymmetric clusters having more than four nanocubes leads to lower SAR values. Magnetization measurements and Monte Carlo-based simulations support the observed SAR trend and reveal the importance of the dipolar interaction effect and its dependence on the details of the particle arrangements within the different clusters.


Assuntos
Compostos Férricos/química , Hipertermia Induzida , Nanopartículas de Magnetita/química , Neoplasias/tratamento farmacológico , Quimioterapia Adjuvante , Coloides/química , Compostos Férricos/síntese química , Compostos Férricos/uso terapêutico , Humanos , Nanopartículas de Magnetita/uso terapêutico , Simulação de Dinâmica Molecular , Estrutura Molecular , Método de Monte Carlo , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA