Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Abdom Radiol (NY) ; 46(8): 3927-3934, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33811261

RESUMO

PURPOSE: To compare automated versus standard of care manual processing of 2D gradient recalled echo (GRE) liver MR Elastography (MRE) in children and young adults. MATERIALS AND METHODS: 2D GRE liver MRE data from research liver MRI examinations performed as part of an autoimmune liver disease registry between March 2017 and March 2020 were analyzed retrospectively. All liver MRE data were acquired at 1.5 T with 60 Hz mechanical vibration frequency. For manual processing, two independent readers (R1, R2) traced regions of interest on scanner generated shear stiffness maps. Automated processing was performed using MREplus+ (Resoundant Inc.) using 90% (A90) and 95% (A95) confidence masks. Agreement was evaluated using intra-class correlation coefficients (ICC) and Bland-Altman analyses. Classification performance was evaluated using receiver operating characteristic curve (ROC) analyses. RESULTS: In 65 patients with mean age of 15.5 ± 3.8 years (range 8-23 years; 35 males) median liver shear stiffness was 2.99 kPa (mean 3.55 ± 1.69 kPa). Inter-reader agreement for manual processing was very strong (ICC = 0.99, mean bias = 0.01 kPa [95% limits of agreement (LoA): - 0.41 to 0.44 kPa]). Correlation between manual and A95 automated processing was very strong (R1: ICC = 0.988, mean bias = 0.13 kPa [95% LoA: - 0.40 to 0.68 kPa]; R2: ICC = 0.987, mean bias = 0.13 kPa [95% LoA: - 0.44 to 0.69 kPa]). Automated measurements were perfectly replicable (ICC = 1.0; mean bias = 0 kPa). CONCLUSION: Liver shear stiffness values obtained using automated processing showed excellent agreement with manual processing. Automated processing of liver MRE was perfectly replicable.


Assuntos
Técnicas de Imagem por Elasticidade , Hepatopatias , Adolescente , Adulto , Criança , Imagem Ecoplanar , Humanos , Fígado/diagnóstico por imagem , Hepatopatias/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Reprodutibilidade dos Testes , Estudos Retrospectivos , Adulto Jovem
2.
Magn Reson Med ; 79(1): 361-369, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28382658

RESUMO

PURPOSE: The stiffness of a myocardial infarct affects the left ventricular pump function and remodeling. Magnetic resonance elastography (MRE) is a noninvasive imaging technique for measuring soft-tissue stiffness in vivo. The purpose of this study was to investigate the feasibility of assessing in vivo regional myocardial stiffness with high-frequency 3D cardiac MRE in a porcine model of myocardial infarction, and compare the results with ex vivo uniaxial tensile testing. METHODS: Myocardial infarct was induced in a porcine model by embolizing the left circumflex artery. Fourteen days postinfarction, MRE imaging was performed in diastole using an echocardiogram-gated spin-echo echo-planar-imaging sequence with 140-Hz vibrations and 3D MRE processing. The MRE stiffness and tensile modulus from uniaxial testing were compared between the remote and infarcted myocardium. RESULTS: Myocardial infarcts showed increased in vivo MRE stiffness compared with remote myocardium (4.6 ± 0.7 kPa versus 3.0 ± 0.6 kPa, P = 0.02) within the same pig. Ex vivo uniaxial mechanical testing confirmed the in vivo MRE results, showing that myocardial infarcts were stiffer than remote myocardium (650 ± 80 kPa versus 110 ± 20 kPa, P = 0.01). CONCLUSIONS: These results demonstrate the feasibility of assessing in vivo regional myocardial stiffness with high-frequency 3D cardiac MRE. Magn Reson Med 79:361-369, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Coração/diagnóstico por imagem , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Infarto do Miocárdio/diagnóstico por imagem , Algoritmos , Animais , Módulo de Elasticidade , Técnicas de Imagem por Elasticidade , Feminino , Interpretação de Imagem Assistida por Computador , Masculino , Pressão , Prognóstico , Software , Estresse Mecânico , Suínos , Resistência à Tração , Sais de Tetrazólio/química , Função Ventricular Esquerda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA