Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Comput Biol Med ; 169: 107880, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211383

RESUMO

It is challenging to model the toxicity of nitroaromatic compounds due to limited experimental data. Nitrobenzene derivatives are commonly used in industry and can lead to environmental contamination. Extensive research, including several QSPR studies, has been conducted to understand their toxicity. Predictive QSPR models can help improve chemical safety, but their limitations must be considered, and the molecular factors affecting toxicity should be carefully investigated. The latest QSPR methods, molecular modeling techniques, machine learning algorithms, and computational chemistry tools are essential for developing accurate and robust models. In this work, we used these methods to study a series of fifty compounds derived from nitrobenzene. The Monte Carlo approach was used for QSPR modeling by applying the SMILES molecular structure representation and optimal molecular descriptors. The correlation ideality index (CII) and correlation contradiction index (CCI) were further introduced as validation parameters to estimate the developed models' predictive ability. The statistical quality of the CII models was better than those without CII. The best QSPR model with the following statistical parameters (Split-3): (R2 = 0.968, CCC = 0.984, IIC = 0.861, CII = 0.979, Q2 = 0.954, QF12 = 0.946, QF22 = 0.938, QF32 = 0.947, Rm2 = 0.878, RMSE = 0.187, MAE = 0.151, FTraining = 390, FInvisible = 218, FCalibration = 240, RTest2 = 0.905) was selected to generate the studied promoters with increasing and decreasing activity.


Assuntos
Tetrahymena pyriformis , Modelos Moleculares , Nitrobenzenos , Método de Monte Carlo , Relação Quantitativa Estrutura-Atividade
2.
J Biomol Struct Dyn ; : 1-11, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38193897

RESUMO

The vascular endothelial growth factor (VEGF) and its cell surface receptor, as well as the human VEGFR-2 domain kinase, are some of the signaling pathways that have received the most attention in this field. This study aimed to identify novel molecules as VEGFR-2 inhibitors using 3D-QSAR modeling based on 1,2,3-triazole. Docking studies and dynamic simulations were performed to analyze novel interactions with the inhibitors and validate the molecular docking, dynamic simulations, and ADMET analyses. The optimized CoMSIA/SEH model showed good statistical results, and molecular docking and molecular dynamics simulations demonstrated stability of M3 ligand with the receptor and provided insight into ligand-receptor interactions. The newly developed compounds performed well in ADMET evaluations and showed promising results using Lipinski's rule of five, suggesting that the molecule M3 could be a useful anti-angiogenesis agent. In conclusion, this study provides insights into the structure-activity relationship of VEGFR-2 inhibitors and identifies M3 as a potential new anti-angiogenesis drug. The methodology used in this study can be applied to other similar drug targets to discover new and potent inhibitors.Communicated by Ramaswamy H. Sarma.

3.
J Mol Model ; 30(1): 23, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38177613

RESUMO

CONTEXT: The regioselectivity and diastereoselectivity of the 1,3-dipolar cycloaddition reaction between azomethine ylides and acrolein were investigated. The DFT studies revealed that the favored pathway leads to the formation of cis-cycloadduct pyrrolidine and these computational findings align with experimental observations. The cis-cycloadduct pyrrolidine product serves as an advanced intermediate in the synthesis of a hepatitis C virus inhibitor. For this, the antiviral activity of cis-cycloadduct pyrrolidine against cyclophilin A, the co-factor responsible for hepatitis C virus, was also evaluated through molecular docking simulations which revealed intriguing interactions and a high C-score, which were further confirmed by molecular dynamics simulations, demonstrating stability over a 100-ns simulation period. Furthermore, the cis-cycloadduct pyrrolidine exhibits favorable drug-like properties and a better ADMET profile compared to hepatitis C virus inhibitor. METHODS: Chemical reactivity studies were performed using DFT method by the functional B3LYP at 6-31G (d, p) computational level by GAUSSIAN 16 program. Frontal molecular orbitals theory used to investigate HOMO/LUMO interactions between azomethine ylides and acrolein. Findings of this approach were confirmed by global reactivity indices and electron displacement was investigated based on Fukui functions. Furthermore, the activation energies were determined after frequency calculations using TS Berny algorithm and transition states were confirmed by the presence of a single imaginary frequency. Moreover, antiviral activity of cis-cycloadduct was explored through molecular docking using Surflex-Dock suite SYBYL X 2.0, and molecular dynamics simulation using GROMACS program. Finally, drug-like properties were investigated with SwissADME and ADMETlab 2.0.


Assuntos
Acroleína , Hepacivirus , Simulação de Acoplamento Molecular , Acroleína/farmacologia , Reação de Cicloadição , Pirrolidinas/química , Antivirais/farmacologia
4.
RSC Adv ; 12(47): 30626-30638, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36337973

RESUMO

Global energy consumption has increased due to population growth and economic development. Solar energy is one of the most important renewable energy sources for human consumption. In this research, four novel organic dyes (D2-D5) of the D-A-π-A structure based on triphenylamine (TPA) were studied theoretically using DFT and TD-DFT techniques for future usage as dye-sensitized solar cells (DSSCs). The effects of modifying the π-spacer of the reference molecule D1 on the structural, electronic, photovoltaic, and optical characteristics of the D2-D5 dyes were studied in detail. D2-D5 exhibited band gaps (E gap) in the range from 1.89 to 2.10 eV with λ abs in the range of 508 to 563 nm. The results obtained show that modifying the π-spacer of the dye D1 increased its hole injection and reinforced the intramolecular charge-transfer (ICT) impact, which resulted in a red-shifted ICT absorption with a greater molar extinction coefficient. The theoretically calculated open-circuit voltage (V oc) values ranged from 0.69 to 1.06 eV, while the light-harvesting efficiency (LHE) values varied from 0.95 to 0.99. Indeed, this theoretical research could guide chemists to synthesize effective dyes for DSSCs.

5.
Life Sci ; 262: 118469, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32956664

RESUMO

Because of the fast increase in deaths due to Corona Viral Infection in majority region in the world, the detection of drugs potent of this infection is a major need. With this idea, docking study was executed on eighteen imidazole derivatives based on 7-chloro-4-aminoquinoline against novel Coronavirus (SARS-CoV-2). In this study, we carried out a docking study of these molecules in the active site of SARS-CoV-2 main protease. The result indicate that Molecules N° 3, 7 and 14 have more binding energy with SARS-CoV-2 main protease recently crystallized (pdb code 6LU7) in comparison with the other imidazole derivatives and the two drug; Chloroquine and hydroxychloroquine. Because of the best energy of interaction, these three molecules could have the most potential antiviral treatment of COVID-19 than the other studied compounds. The structures with best affinity in the binding site of the protease have more than 3 cycles and electronegative atoms in the structure. This may increase the binding affinity of these molecules because of formation of π-bonds, halogen interactions and/or Hydrogen bond interactions between compounds and the enzyme. So, compounds with more cycles and electronegative atoms could have a potent inhibition of SARS-CoV-2 main protease.


Assuntos
Proteases 3C de Coronavírus/antagonistas & inibidores , Imidazóis/farmacologia , Simulação de Acoplamento Molecular , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Aminoquinolinas/farmacologia , Sítios de Ligação/efeitos dos fármacos , Cloroquina/farmacologia , Hidroxicloroquina/farmacologia , Imidazóis/química , Estrutura Molecular , Pandemias , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA